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The selection pressure exerted by herbicides has led to the repeated
evolution of herbicide resistance inweeds. The evolution of herbicide
resistance on contemporary timescales in turn provides an out-
standing opportunity to investigate key questions about the genetics
of adaptation, in particular the relative importance of adaptation
from new mutations, standing genetic variation, or geographic
spread of adaptive alleles through gene flow. Glyphosate-resistant
Amaranthus tuberculatus poses one of the most significant threats
to crop yields in the Midwestern United States, with both agricul-
tural populations and herbicide resistance only recently emerging
in Canada. To understand the evolutionary mechanisms driving
the spread of resistance, we sequenced and assembled the A.
tuberculatus genome and investigated the origins and population
genomics of 163 resequenced glyphosate-resistant and susceptible
individuals from Canada and the United States. In Canada, we discov-
ered multiple modes of convergent evolution: in one locality, resis-
tance appears to have evolved through introductions of preadapted
US genotypes, while in another, there is evidence for the independent
evolution of resistance on genomic backgrounds that are historically
nonagricultural. Moreover, resistance on these local, nonagricultural
backgrounds appears to have occurred predominantly through the
partial sweep of a single haplotype. In contrast, resistant haplotypes
arising from the Midwestern United States show multiple amplifica-
tion haplotypes segregating both between and within populations.
Therefore, while the remarkable species-wide diversity of A.
tuberculatus has facilitated geographic parallel adaptation of glyph-
osate resistance, more recently established agricultural populations
are limited to adaptation in a more mutation-limited framework.
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Glyphosate-resistant Amaranthus tuberculatus was first repor-
ted in Missouri in 2005 but has since been reported in 19 US

states (1), with resistant biotypes harming corn and soybean yields
(2, 3). Resistance to glyphosate in weed populations is widespread,
likely as a result of the rapid adoption of and reliance on glyph-
osate weed control technology; 84% of soybeans, 60% of cotton,
and 20% of corn grown in the United States by 2004 carried
transgenes for glyphosate resistance, despite Roundup Ready
technology—the combination of glyphosate weed control with
transgenic glyphosate resistance—only having been introduced 8 y
earlier (4). Agriculturally associated A. tuberculatus weed pop-
ulations emerged in Canada in the province of Ontario only in the
early 2000s, with glyphosate resistance following a decade later (3,
5). As with other herbicides, resistance in weed populations can
evolve via substitutions at the direct target of glyphosate,
5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), or by poly-
genic adaptation involving different loci in the genome (6–10).
More often, glyphosate resistance in the genus Amaranthus has
an unusual genetic basis: amplification of the EPSPS locus (11–
15). Gene amplification apparently evolved independently in 2

Amaranthus species (14, 16, 17), raising the possibility that it could
have evolved multiple times independently within a single species,
or even population (18). While glyphosate resistance has been
studied from multiple angles (15, 19–23), the recent discovery of
glyphosate-resistant A. tuberculatus in southwestern Ontario af-
fords the unique opportunity to evaluate the evolutionary origins
of herbicide resistance, whether it has arisen through de novo
mutation or standing genetic variation, and the role of gene flow
in the recent spread of herbicide resistance in an agronomically
important weed.
Native to North America, the dioecious, wind-pollinated

A. tuberculatus has a history marked by the interaction of 2 lineages
or subspecies [sensu Costea and Tardif (19) and Pratt and Clark
(20)], thought to have been diverging on either side of the
Mississippi River until they were brought back into contact
through human-mediated disturbance (21, 22). Morphological,
herbarium, and microsatellite evidence point to an expansion of
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the western var. rudis subspecies range limits over the last 50 y,
while the range of more eastern var. tuberculatus subspecies is
thought to be stagnant and constrained to riparian habitats (22,
23). With the timing of the var. rudis expansion coinciding with
the invasion of A. tuberculatus into agricultural environments,
var. rudis is hypothesized to be a predominant driver of this
agricultural invasion (23).

Sequencing and Collections. We assembled a high-quality refer-
ence genome for A. tuberculatus from a single individual from 58
Gb (∼87× genome coverage) long-read data collected on the
Pacific Biosciences Sequel platform using 15 SMRT cells. After
assembly, polishing, and haplotype merging, the reference ge-
nome consisted of 2,514 contigs with a total size of 663 Mb and
an N50 of 1.7 Mb (see SI Appendix, Table S1, for details). Our
final genome size is consistent with recent cytometric estimates
of 676 Mb (SE = 27 Mb) for A. tuberculatus (24). The new ref-
erence included 88% of the near-universal single-copy orthologs
present in BUSCO’s Embryophyta benchmarking dataset, with
6% marked as duplicates (25). For chromosome-scale sweep
scan analyses, we further scaffolded our contigs onto the fully
resolved Amaranthus hypochondriacus genome (26), resulting in

16 final pseudomolecules (which included 99.8% of our original
assembly; Methods) for population genetic analyses.
We resequenced whole genomes of 163 individuals to about

10× coverage from 19 agricultural fields in Missouri, Illinois, and
2 regions where glyphosate resistance has recently appeared in
Ontario: Essex County, an agriculturally important region in
southwestern Ontario; and Walpole Island, an expansive wetland
and First Nation reserve with growing agricultural activity (Fig.
1B). Populations from the Midwest (Missouri and Illinois) had
been previously assayed for glyphosate-resistant phenotypes, and
from qPCR of genomic DNA it was found that resistance was
predominantly conferred through EPSPS copy number amplifi-
cation (11). Populations fromWalpole Island and Essex County in
Ontario were sampled in 2016 after reports from farmers that they
were not controlled by herbicides. We also sampled 10 individuals
from riparian habitats in Ontario near Walpole Island and Essex
County, as a nonagricultural, natural Canadian comparison (Fig.
1B). Genome-wide diversity in A. tuberculatus is quite high, even
relative to other wind-pollinated outcrossers (27), with neutral
diversity (mean pairwise difference) at 4-fold degenerate sites
being 0.041. The frequency of glyphosate resistance in the sampled
agricultural fields ranged from 13 to 88%, based on greenhouse
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Fig. 1. Population structure and demographic history in Amaranthus tuberculatus. (A) Demographic model of the 2 A. tuberculatus subspecies (Na = an-
cestral effective population size, with migration and other effective population size estimates scaled accordingly). (B) Geographic map of phenotyped and
sequenced populations with variable glyphosate resistance in the United States and Canada. Natural populations are nonagricultural, Canadian populations
without glyphosate resistance. Populations are color-coded by region (maintained throughout text). Dark portions of each pie chart indicate proportion of
resistant individuals. Inset shows close-up of agricultural and natural Ontario populations. Historical range limits of the species are indicated on the map, with
the same coloration as for the demographic model: A. tuberculatus var. rudis in light gray to the west, and A. tuberculatus var. tuberculatus in dark gray to the
east [spp. range limits described by Sauer (21)]. (C) STRUCTURE plot of admixture across regions and populations from west (Left) to east (Right), with most likely
number of clusters (K) = 3. The darkest ancestry group corresponds to var. tuberculatus, and the lightest corresponds to var. rudis. (D) treemix results showing the
maximum likelihood of relatedness between populations based on allele frequencies, with population labels at the tip of each branch, dashed arrows indicating
the amount (color) and direction of migration between populations, and the drift parameter reflecting the amount of genetic drift that has occurred between
populations. (E) PCA of all individuals, with both PC1 and PC2 significantly relating to both longitude and latitude (SI Appendix, Table S2).
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trials (Fig. 1B and Methods). Plants from natural populations in
Ontario had no glyphosate resistance.

Demography of Amaranthus tuberculatus. To dissect the demographic
context of convergent adaptation to glyphosate, we characterized
genome-wide patterns of population structure, demography,
and differentiation. Population structure, demographic mod-
eling (Fig. 1), and phenotypic characterization confirmed the
presence of the 2 previously hypothesized ancestral lineages, A.
tuberculatus var. rudis and A. tuberculatus var. tuberculatus (22, 23).
Population structure and investigations of the genome-wide
proportion of introgression [f statistic (28)] largely reflected
previous accounts of the historical range limits (22): Natural
Ontario populations had the diagnostic indehiscent seed phe-
notype and were genetically homogeneous for ancestry of the
var. tuberculatus lineage; Missouri samples were homogeneous
for the var. rudis lineage; while Illinois, a region of sympatry in
the historical range of the 2 subspecies, showed signs of in-
trogression from var. tuberculatus {mixture proportion, f [95%
confidence interval (CI)] = 0.1342 [0.126, 0.143], using Missouri
as a reference (28, 29)} (Fig. 1 B and C). Genetic differentiation
(FST) between individuals with ancestry homogenous for different
lineages at K = 2 was 0.212, on par with or greater than that between
other congeners (30). Moreover, both longitude and latitude signif-
icantly explained both PC1 and PC2 of the SNP matrix (SI Appendix,
Table S2), with PC1 separating var. rudis and var. tuberculatus
ancestry, and PC2 separating Canadian and American accessions
(Fig. 1E). These patterns of diversity resulted in principal-component
representation that, with few exceptions, reflected the geography
of our samples. The most likely tuberculatus-rudis demographic
model was one of secondary contact, with var. rudis having un-
dergone a bottleneck followed by a dramatic expansion, which
may be indicative of this subspecies’ rapid colonization of agri-
cultural fields across North America (Fig. 1A).

Demographic Origins of Canadian Agricultural Populations. Analyses
of newly problematic agricultural populations in Ontario provides
a unique angle for tracking the demographic source of the A.
tuberculatus agricultural invasion. Populations from Essex County
fell completely within the var. rudis cluster, with a treemix model
indicating that Essex populations were derived from the most
western Missouri population (Fig. 1E), the source of almost the
entire Essex genome (f[95% CI] = 0.996 [0.985, 1]). Furthermore,
while Essex grouped with Walpole and Natural populations on
PC2, it was found at the other end on PC1, more different from
Canadian populations than even the most geographically distant
Missouri population (Fig. 1B). These patterns of population
structure were distinct from the continuous gradient of southwest–
northeast ancestry previously reported (23) and supports the hy-
pothesis that glyphosate-resistant A. tuberculatus was introduced to
Ontario from the United States through seed-contaminated agri-
cultural machinery (3, 5) or animal-mediated seed dispersal (31).
In contrast to Essex as a likely introduction of a preadapted

genotype to a new locale, populations from Walpole Island,
where glyphosate resistance was first reported in Ontario (5),
were mainly of the native, eastern var. tuberculatus type (Fig. 1).
However, the convergent evolution of var. tuberculatus into
agricultural fields may not be solely the result of de novo mu-
tations. Populations from Walpole Island showed signs of in-
trogression from var. rudis (f[95% CI] = 0.225 [0.215, 0.236]),
while treemix indicated that Walpole may be a hot spot for gene
flow, with 9 of 10 total migration events across the tree involving
Walpole (explaining an additional 2.5% of SNP variation com-
pared to a migration-free model) (Fig. 1C). Thus, both adaptive
introgression from the western var. rudis clade and/or de novo
adaptation from local natural populations could be playing a role
in the evolution of resistance and adaptation to agricultural
environments in Walpole.

Despite the considerable level of var. rudis introgression into
Walpole, these populations were similarly differentiated from
nearby natural populations homogenous for var. tuberculatus
ancestry as they were from comparably admixed populations in
Illinois [FST (Walpole-Nat) = 0.0286; FST (Walpole-Illinois) = 0.0284; SI
Appendix, Fig. S1]. This, along with the tight clustering of Wal-
pole and Natural populations in the PCA and structure analyses,
implies that Walpole populations experienced strong and rapid
local adaptation to agricultural environments upon its conver-
sion from wetland, which may have been facilitated by intro-
gression from var. rudis. We therefore sought to find genes that
were highly differentiated between Walpole and Natural pop-
ulations, putatively involved in agricultural adaptation. A Gene
Ontology (GO) enrichment test for the top 1% of genes with
excess differentiation between Walpole and natural populations
identified genes with monooxygenase and oxidoreductase molecular

Region: F1,3240= 35.08, p = 3.5e-09 Region : F1,3005= 90.74, p = <2e-16

Molecular Function Fold Enrichment raw P value FDR
alkane 1-monooxygenase activity 46.08 0.00000682 0.021

oxidoreductase activity 40.32 0.0000101 0.0156
Biological Process
histone lysine methylation 16.8 2.50E-05 4.92E-02
peptidyl-lysine methylation 14.23 8.73E-06 5.16E-02
peptidyl-amino acid modification 3.95 1.15E-05 3.40E-02
Protein Class
DNA methyltransferase 15.12 0.00153 0.0531
ribonucleoprotein 6.3 0.00158 0.0459
transfer/carrier protein 4.55 0.00119 0.0516
dehydrogenase 2.92 0.000743 0.0431
oxidoreductase 2.42 0.0000143 0.00249
hydrolase 1.78 0.00164 0.0409
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Fig. 2. Enrichment and expansion of CYP450 and glycosyltransferase gene
families in the transition from natural to agricultural in Walpole. (A) GO
categories that were significantly enriched in an analysis of the 99th per-
centile of Fst outliers between Walpole and Natural populations. Light gray
indicates GO categories that include CYP450s; dark gray indicates the category
that includes glycosyltransferases. (B) Evidence for copy number expansion of
both CYP450 and glycosyltransferase genes in Walpole relative to Natural
populations. Each row represents a single annotated gene of a given gene
family, with each density plot representing the distribution of themedian copy
number, inferred from 100-bp windows, across individuals for that gene.
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function, with histone methylation biological function, and sev-
eral protein classes involved in transport and amino acid/protein
modification (Fig. 2A). Of particular interest were 2 enriched
GO categories important in metabolic, nontarget site resistance:
oxidoreductases, which include cytochrome P450s, and peptidyl-
amino acid modifiers, which include glycosyltransferases (7).
CYP450s and glycosyltransferases work consecutively to detoxify
herbicides in plant cells by catalyzing hydroxylation and glc-conjugation
(32). In addition to these 2 gene families being highly differenti-
ated between Walpole and Natural populations, we also investi-
gated the possibility for copy number expansion or contraction.
An analysis of the median copy number of 100-bp windows within
each gene, for each individual (Methods), revealed that genes in
both gene families consistently had significantly expanded copy
number in Walpole populations (least square means: CYP450s,
1.82 [95% CI, 1.80, 1.85]; glycosyltransferases, 2.04 [95% CI, 2.02,
2.06]) compared to natural populations (least square means: CYP450s,
1.67 [95% CI, 1.62, 1.71]; glycosyltransferases, 1.83 [95% CI, 1.79,
1.86]) (Fig. 2B). Despite this widespread pattern across 69 CYP450
and 64 glycosyltransferase genes, no CYP450s or glycosyltransferases
were significantly correlated with our phenotypic rating of glyphosate
resistance after Holm’s correction for multiple testing. A pos-
sible explanation is that the copy number expansion of these
gene families confers resistance to herbicides other than just
glyphosate, or, more broadly, is a result of the transition from
natural to agricultural habitats.

Genetic Mechanisms of Glyphosate Resistance. Two major evolu-
tionary paths to glyphosate resistance are amplification of wild-
type EPSPS and nonsynonymous mutations in EPSPS that make
the enzyme resistant to glyphosate inhibition. To better un-
derstand the genetic mechanisms underpinning glyphosate re-
sistance, we investigated how variation in resistance relates to
these 2 classes of EPSPS mutations. Using our genomic data to
quantify copy number (Methods), we found that of 84 individuals
assayed in the greenhouse as resistant (resistance, ≥2/5 rating;
Fig. 3), 60 (71%) had elevated EPSPS copy number (>1.5; as in
ref. 13). However, almost 26% (22 of 83) of individuals assayed
as susceptible had an EPSPS copy number >1.5 (compared to
15% or 13 of 88 individuals for a >2 cutoff). Apart from errors in
phenotyping or copy number estimation, this implies that in-
termediate copy number amplification alone may not always be
sufficient for resistance, e.g., if amplified copies are not properly
expressed. While EPSPS amplification was most frequent in the
Midwest (83% [33 of 40] of resistant individuals, compared to
70% [16 of 23] in Walpole and 52% [11 of 21] in Essex), copy
number in resistant individuals was on average almost twice as
high in Walpole (∼9 copies on average, compared to 5 in the
Midwest and 4 in Essex). Previous estimates of EPSPS copy
number in resistant A. tuberculatus were up to 17.5 copies rela-
tive to diploid susceptibles (11); we found 2 individuals in Wal-
pole with an estimated 29 copies (Fig. 3). A regression of
resistance onto copy number was significant in all 3 geographic

regions (Walpole, P = 2.6e-07; Essex, P = 0.002; Midwest, P =
3.5e-06), explaining 48% of the variation in resistance in Walpole,
but only 23% and 27% in Essex and the Midwest. In these latter 2
regions, however, an additional 10% of variation was explained by
a nonsynonymous substitution at codon 106, the most common
and well-characterized genetic mechanism of glyphosate resis-
tance across species outside of the genus Amaranthus (1), in
this instance causing a change from proline to serine (Fig. 3).
The presence of 2 types of target-site resistance mechanisms,

copy number increase and nonsynonymous mutation at a critical
codon, implies parallel evolution of the resistance phenotype
through independent genetic pathways. While the well-known
P106S nonsynonymous mutation can account for some of the re-
sistance unexplained by copy number increase alone, other unchar-
acterized nontarget site mechanisms are likely contributing as well
and thus providing a further path to convergent evolutionary out-
comes. In addition to shedding light on the prevalence of different
resistance mechanisms, the population genomic data allowed us
to determine whether our most prevalent genetic mechanism,
namely the EPSPS gene amplification, arose multiple times.

Genetic Origins of the EPSPS Amplification. Our chromosome-scale
genome assembly provided a unique opportunity to determine the
structure and genomic footprint of selection around the amplified
EPSPS locus in different populations. Across all populations, copy
number increase was not restricted to the 10-kb EPSPS gene—
individuals identified to have increased copy number at EPSPS also
had a correlated increase in the mean and variance of copy number
for up to 6.5 Mb of the reference genome (23.5 to 30 Mb on
chromosome 5), encompassing 108 genes (SI Appendix, Fig. S2).
Characterizing signals of selection for a high copy number

region can be challenging. First, typical population genetic sta-
tistics ignore potential variation among gene copies that are
collapsed into a single haplotype. Ideally, phasing of a multicopy
region would allow for full resolution of the single-nucleotide
polymorphism (SNP) differences within and between haplotypes.
However, very recent gene amplification is expected to limit SNP
variation among amplified copies, and will also hinder phasing
approaches from short read data. Second, variation may not be
recognized because of allelic dropout of low-copy variants.
Analysis of the relationship between EPSPS copy number and
homozygosity in our dataset suggested that higher-copy haplo-
types did not feature more SNP variation than lower-copy haplo-
types, implying that generally few new mutations distinguish among
amplified copies (SI Appendix, Fig. S3). Nonetheless, to control for
the possibility of residual SNP differences that exist among gene
copies and/or for allelic dropout, we created a consensus haploid
sequence by random downsampling to 1 allele per heterozygous
site. Because we downsampled SNP by SNP, we do not expect
our downsampling to be biased toward any particular haplotype.
While the EPSPS-related amplification showed the strongest

selective signal on all of chromosome 5, we found distinct se-
lective sweep patterns in the different agricultural regions. We
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Fig. 3. EPSPS copy number variation among indi-
viduals, and its relationship with resistance. EPSPS
copy number significantly explains phenotypic re-
sistance within each agricultural region (solid linear
regression line) (Walpole, P = 2.6e-07; Essex, P =
0.002; Midwest, P = 3.5e-06), with P106S substitution
in EPSPS (red individuals) increasing explained re-
sistance in Essex and the Midwest, but not in Wal-
pole (dashed linear regression line).
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ran Sweepfinder2 (33, 34) across chromosome 5 to identify focal
windows with a site-frequency spectrum particularly skewed by
selection (while controlling for recombination) relative to genome-
wide 4-fold degenerate sites. Sweepfinder2 estimated the strongest
amplification-related sweep signal in Walpole. In contrast to Essex
or the Midwest, the top 1% of apparently selected 10-kb windows
on chromosome 5 were localized to the amplified EPSPS region in
Walpole (SI Appendix, Fig. S4). Moreover, there was a marked
reduction in genetic diversity (mean pairwise differences) around
EPSPS, as well as elevated differentiation (Fst) and extended
haplotype homozygosity [XP-EHH score (35)] in Walpole indi-
viduals with the EPSPS amplification, implying a hard selective
sweep, but not in Essex or Midwest individuals with increased
EPSPS copy number (Fig. 4).
These differences in the extent of the amplification-related

sweep signals across agricultural regions may be a consequence
of how often EPSPS amplification has evolved; a hard sweep
would be indicative of it having arisen only once, while soft
sweeps would point to multiple origins (36–39). To investigate
this further, we mapped EPSPS copy number onto a maximum-
likelihood haplotype tree produced from SNP variants in EPSPS,
and compared the phylogeny with phenotypic resistance and
nonsynonymous target-site resistance status (Fig. 5). Indeed, the
agricultural regions differed in the inferred number of inde-
pendent copy number increases. Whereas there appears to have
been only one amplification event in Walpole, Essex haplotypes
of individuals with copy number increases are interspersed with
susceptible haplotypes, both within and between populations.
Similarly, haplotypes from Midwest individuals with EPSPS am-
plification are distributed across the gene tree, although some
local populations show clustering indicative of a local hard sweep,
implying independent evolutionary origins among populations and
occasionally within populations in the Midwest (Fig. 5).
Together, these analyses suggest that gene amplification has

occurred multiple times independently to different extents across
the geographic range. However, it is possible that recombination
and de novo mutation after amplification have contributed to the
apparent soft sweep signal. To further test for multiple inde-
pendent origins, we looked at the similarity in the copy number
profiles of the EPSPS region, which should also be independent

of any possible artifacts due to minority allele dropout in rese-
quencing data. The copy number profiles of the amplified region
varied considerably across our samples, and especially across
agricultural regions (Fig. 6A), consistent with multiple in-
dependent amplification events. To quantify this, we calculated
the Spearman’s rank correlation coefficient of normalized se-
quence coverage in the 1-Mb chromosomal segment surrounding
EPSPS between all possible pairs of individuals with copy num-
ber increases—this quantifies only the similarity in the rank, and
not amplitude, of the landscape of copy number across loci within
the segment (Fig. 6B). In agreement with our polymorphism-based
inferences, the 2 Canadian regions showed very different patterns;
coverages in different Walpole individuals were very highly cor-
related (average of Spearman’s ρ = 0.95), suggesting the spread of
a single amplification haplotype through a hard selective sweep. In
contrast, there was much a lower average correlation across all
Essex individuals region-wide (ρ = 0.56), and this was the case
even when looking at the average within-population correlations
rather than the single region-wide average (within-population
average, e.g., ρ = 0.54 and 0.61), suggesting different haplotypes
had independently experienced copy number increases (Fig. 6).
Similar to Essex, there appeared to be multiple amplification
haplotypes in the Midwest (average for all individuals, ρ = 0.47),
but within-population correlations were higher, consistent with
hard (ρ = 0.94, 0.95, 0.93) or soft sweeps (ρ = 0.66, 0.74, 0.75)
(Fig. 6).

Discussion
The patterns of genetic differentiation and similarity in amplifi-
cation profiles among agricultural regions helped us to distinguish
between modes of adaptation, the evolutionary mechanisms by
which glyphosate resistance has spread, and the extent of con-
straint on this particular genetic pathway. Although the Walpole
population showed signs of admixture from var. rudis, Walpole
individuals were clearly differentiated at EPSPS from both Essex
and Midwest individuals (SI Appendix, Fig. S5). Moreover, copy
number profiles were almost perfectly correlated within Walpole,
but showed low correlations with Essex and the Midwestern in-
dividuals (Fig. 6B). This suggests that glyphosate resistance in
Walpole evolved independently, likely from selection on a de novo

Fig. 4. Population genetic signals of selection related to copy number increase around EPSPS on chromosome 5. The deficit of diversity (Top), relative
differentiation (Middle), and difference in extended haplotype homozygosity [XP-EHH (34)] (Bottom) is compared between amplified and nonamplified
individuals in each agricultural region. EPSPS is delimited by the vertical gray dashed line, while the EPSPS-linked region undergoing amplification is shown by
the light gray box, spanning 23.5 to 30 Mb on chromosome 5.
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amplification event, although we do not know whether the am-
plification occurred in Walpole, or whether this allele was intro-
gressed from an unsampled population. In Essex, the lack of
within-region correlation in EPSPS copy profiles and sporadic
high correlations with individuals from different Midwestern
populations (Fig. 6B), suggest multiple independent amplifi-
cation events. Together with the lack of genetic differentiation
between Essex and Midwest (both genome-wide and on all of
chromosome 5, including EPSPS; SI Appendix, Fig. S5), this
suggests that Essex was either directly colonized by a diverse
glyphosate-resistant population from the Midwest, or that a prior
glyphosate-susceptible population in Essex was replaced by
glyphosate-resistant individuals from the Midwest.
In summary, we have found multiple modes of convergent

evolution underlying the spread of glyphosate resistance in
North American A. tuberculatus populations. There is evidence
for a single EPSPS amplification event that gave rise to the re-
sistant populations in Walpole, distinct from amplification events
in populations from another Canadian region, Essex County, and
from populations in the US Midwest, where glyphosate resis-
tance is older than in Canada. In contrast to the hard sweep in
Walpole, glyphosate selection has left only soft selective sweep
signals in the Midwest, because different haplotypes were am-
plified independently. Together with our analyses of population
structure and demographic history, these results suggest that
evolution on the more agriculturally naive, and recently bot-
tlenecked A. tuberculatus var. tuberculatus background occurred
in a mutation-limited framework, relying on evolutionary rescue
via de novo mutation. In contrast, multiple independent ampli-
fication haplotypes have been maintained both within and
among populations of A. tuberculatus var. rudis, likely resulting
from its recent population expansion, long-range gene flow (as in
Essex), and a longer history of spatially and temporally fluctu-
ating selection [as suggested in Kreiner et al. (40)]. Therefore,
demographic history and duration of selection have interacted to
determine whether adaptation remains constrained to a mutation-
limited framework.
A practical outcome of this work is that it informs on the scale

of management that is needed to control herbicide resistance.
Specifically, we suggest that with glyphosate resistance spreading
across the range through seed translocation and independent

adaptation, management efforts should be broadened to en-
compass both regional seed containment and local integrative
control of herbicide-resistant weeds. We are faced with an ad-
ditional challenge—that historically nonweedy lineages can
adapt to an agricultural environment on rapid, contemporary
timescales—calling for more consideration of how to prevent
seemingly benign weeds from becoming problematic.

Methods
Plant Collections. Seeds were collected from Midwestern populations in 2010
(11), and from Ontario natural populations and agricultural fields in the fall
of 2016. Agricultural fields in which A. tuberculatus appeared to be poorly
controlled were sampled, biasing the collection toward populations with
high levels of glyphosate resistance. These do not necessarily represent levels
of resistance in a random sample.

High–Molecular-Weight DNA Extraction. High–molecular-weight (HMW) DNA
was extracted from the leaf tissue of a single 28-d-old female A. tuberculatus
plant from the Midwest using a modified version of the Doyle and Doyle
nuclei isolation protocol (41). Nuclei isolation was carried out by incubating
30 g of ground leaf tissue in a buffer comprising tris(hydroxymethyl)ami-
nomethane, potassium chloride, EDTA, sucrose, spermidine, and spermine
tetrahydrochloride (Sigma-Aldrich). The homogenate was subsequently fil-
tered using miracloth and precipitated by centrifugation. G2 lysis buffer,
RNase A, and Proteinase K (Qiagen) were then added prior to an overnight
incubation at 50 °C, followed by centrifugation at 4 °C. The supernatant
containing the DNA solution was added to an equilibrated Qiagen genomic
tip 100 (Qiagen). Genomic DNA was eluted and precipitated using isopropanol.
Finally, HMW DNA was isolated by spooling.

SMRTbell Library Preparation and Sequencing. HMW genomic DNA was
sheared to 30 kb using a Megaruptor 2 instrument (Diagenode SA). DNA
damage and end repair were carried out prior to blunt adaptor ligation and
exonuclease purification using ExoIII and ExoVII, in accordance with the
protocol supplied by Pacific Biosciences (P/N 101-024-600-02; Pacific Bio-
sciences). The resultant SMRTbell templates were size-selected using a
BluePippin (SageScience) instrument with a 15-kb cutoff and a 0.75% DF
Marker S1 high-pass 15- to 20-kb gel cassette. The final library was sequenced
on a Sequel System (Pacific Biosciences) with v2 chemistry, MagBead loading,
and SMRT Link UI v4 analysis.

Lucigen PCR-Free Library Preparation and Sequencing. Genomic DNA was
fragmented to 350-bp size using a Covaris S2 Focused Ultrasonicator (Covaris).
Subsequent end-repair, A-tailing, Lucigen adaptor ligation, and size selection
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Fig. 5. Diversity of EPSPS amplification origins across agricultural regions. For each agricultural region, we show a haplotype tree of based on SNPs within
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were performed using the Lucigen NxSeq AMPFree Low DNA Library
Kit (Lucigen). Libraries were quantified using a Qubit 2.0 instrument (Life
Technologies), and library profiles were analyzed using a Bioanalyzer High
Sensitivity Chip on an Agilent Bioanalyzer 2100 (Agilent Technologies). The
libraries were sequenced to a coverage depth of 10× on an HiSeq 3000 in-
strument (Illumina) using a HiSeq 3000/4000 SBS kit and paired-end 150
base read chemistry. Raw fastq files were deposited to ENA (project no.
PRJEB31711) (42).

Genome Assembly and Haplotype Merging. The genome was assembled from
58 Gb of Sequel long read data using Canu (version 1.6; genomeSize = 544 m;
other parameters default) (43). Raw contigs were polished with Arrow (Con-
sensusCore2, version 3.0.0; consensus models S/P2-C2 and S/P2-C2/5.0; other
parameters default) and Pilon (version 1.22; parameters default) (44). Polished
contigs were repeat masked using WindowMasker (version 1.0.0; -checkdup;
other parameters default) (45). Repeat-masked contigs were screened for
misjoints and subjected to haplotype merging using HaploMerger2 [commit
95f8589; identity = 80, other parameters default (46)]. A custom scoring
matrix was supplied to both lastz steps of Haplomerger2 (misjoint and
haplotype detection). The scoring matrix was inferred from an all-vs.-all
contig alignment using minimap2 (version 2.10; preset asm10; other pa-
rameters default) (47) taking only the best contig-to-contig alignments
into account. The final assembly was finished against the chromosome-resolved
A. hypochondriacus genome (26) using reveal finish (commit 98d3ad1;
–fixedgapsize –gapsize 15,000; other parameters default) (48). The 16 resulting
pseudo-chromosomes represented 99.6% of the original assembly.

Alignment, SNP Calling, and Gene Annotation. We used freebayes (49) to call
SNPs jointly on all samples. For whole-genome analyses, we used a thor-
oughly filtered SNP set following established guidelines (50, 51) adapted for
whole-genome data: sites were removed based on missing data (>80%),
complexity, indels, allelic bias (<0.25 and >0.75), whether there was a dis-
crepancy in paired status of reads supporting reference or alternate alleles,
and mapping quality (QUAL < 30, representing sites with greater than a 1/1,000
error rate). Individuals with excess missing data (>5%) were dropped. This led
to a final, high-confidence SNP set of 10,280,132 sites. For EPSPS-specific anal-
yses and genome-wide investigations that required invariant sites, we recalled
SNPs with samtools (V1.7; ref. 52) and bwa-mem (V0.7.17; ref. 53). For this SNP
set, sites were minimally filtered on mapping quality and missing data (keeping
only sites with MQ >30 and <20% missing data), so that diversity estimates

were not biased by preferentially retaining invariant or variant sites. For
both SNP sets, we used bwa-mem to map to our fastqs to the reference ge-
nome. Bam files were sorted and duplicates marked with sambamba (V0.6.6;
ref. 54), while cigars were split and read groups added with picard (V2.17.11).

We performed gene annotation on both our final assembly and the A.
hypochondriacus-finished pseudoassembly using the MAKER pipeline (55).
A. tuberculatus-specific repeats were identified using RepeatModeler
(v1.0.11; ref. 13), combined with the RepBase repeat library, and masked
with RepeatMasker (v4.0.7; ref. 14). This repeat-masked genome was then
run through MAKER (v2.31.8), using expressed sequence tag evidence from
an A. tuberculatus transcriptome assembly (56) and protein homology evi-
dence from A. hypochondriacus (57). The gene models were further anno-
tated using InterProScan (v69.0; ref. 58), resulting in a total of 30,771 genes
and 40,766 transcripts with a mean transcript length of 1,245 bp. The mean
annotation edit distance (AED) score was 0.21, and 98.1% of the gene
predictions had an AED score of <0.5, indicating high-quality annotations.

Phenotyping. Seedlings from each population were grown in a 1:1:1:1 soil:
peat:Torpedo Sand:LC1 (SunGro commercial potting mix) medium supple-
mented with 13-13-13 Osmocote in a greenhouse that was maintained at
28/22 °C day/night temperatures for a 16:8-h photoperiod. Plants were sprayed
at the 5 to 7 leaf stage with 1,260 g of glyphosate (WeatherMax 4.5 L;
Monsanto) per hectare. Fourteen days after treatment, plants were rated
visually on a scale of 0 (highly sensitive) to 5 (no injury). Plants rated 2 or
higher were classified as resistant. Prior to herbicide treatment, single leaf
samples were taken from each plant and stored at −80 °C until ready for
genomic DNA extraction. Tissue from plants rated as highly glyphosate re-
sistant or susceptible were selected from each population for genomic DNA
extraction using a modified cetrimonium bromide method (41).

Copy Number Estimates. Scaled coverage and copy number at EPSPS was
estimated by dividing the coverage at each site across the focal region by the
mode of genome-wide coverage after excluding centromeric regions (which
have repeats and thus often abnormally high coverage) and regions of low
coverage (<3×, indicative of technical coverage bias), which should repre-
sent the coverage of single-copy genes.

Structure, Demographic Modeling, and Summary Statistics. To model neutral
demographic history and estimate neutral diversity, we used a Python script
(available at https://github.com/tvkent/Degeneracy) to score 0-fold and 4-fold
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degenerate sites across the genome. This procedure estimated 17,454,116 0-
fold and 4,316,850 4-fold sites across the genome, and after intersecting
with our final high-quality freebayes-called SNP set, resulted in 345,543
0-fold SNPs and 326,459 4-fold SNPs. The latter was used as input for
demographic modeling.

Our 2-population demographic model of A. tuberculatus modeled the
split between the A. tuberculatus var. tuberculatus and var. rudis subspecies
by collapsing individuals into 1 of the 2 populations based on predominant
ancestry as identified in our STRUCTURE analyses, estimated in ∂a∂i (V1.7.0)
(59) using the pipeline available on https://github.com/dportik/dadi_pipeline
(60). 1D and 2D site frequency spectrums were estimated using the program
easySFS (https://github.com/isaacovercast/easySFS), and samples were pro-
jected downward to maximize the number of loci without missing data vs.
number of individuals retained. We ensured that the log-likelihood of our
parameter set had optimized by iterating the analysis over 4 rounds of in-
creasing reps, from 10 to 40. We tested a set of 20 diversification models,
with variation in split times, symmetry of migration, constancy of migration,
population sizes, and size changes. The most likely inferred demography
followed a model of secondary contact, where initially populations split
without gene flow, followed by population size change with asymmetrical
gene flow, and included 8 parameters: size of population 1 after split
(nu1a), size of population 2 after split (nu2a), the scaled time between the
split and the secondary contact (in units of 2*Na generations) (T1), the
scaled time between the secondary contact and present (T2), size of pop-
ulation 1 after time interval (nu1b), size of population 2 after time inter-
val (nu2b), migration from population 2 to population 1 (2*Na*m12), and
migration from population 1 to population 2 (m21). Ne was calculated by
substituting the per-site θ estimate (after controlling for the effective se-
quence length to account for losses in the alignment and missed or filtered
calls) and the Arabidopsis thaliana mutation rate (7 × 10−9) (61) into the
equation θ= 4Neμ.

We used PLINK (V1.9; ref. 62) to perform a PCA of genotypes from our
final freebayes SNP set after thinning to reduce the effects of sites that are
in linkage disequilibrium, used STRUCTURE (V2.3.4) (63) to estimate admix-
ture across populations, and treemix (V3) (64) to infer patterns of population
splitting and migration events. To calculate summary statistics (π, FST, Dxy),
we used scripts from the genomics general pipeline available at https://
github.com/simonhmartin/genomics_general, binning SNPs into 100-kb
windows with a step size of 10 kb. To estimate the proportion of intro-
gression of var. rudis ancestry into Walpole agricultural populations in these
genomic windows, we used the f statistic (but with nonoverlapping win-
dows) (28). For investigation of introgression of Natural populations into
Illinois (var. tuberculatus into var. rudis), we used Missouri as the reference
ingroup. For investigation of introgression of Essex populations into Walpole
(var. tuberculatus into var. rudis), we used Natural populations as the refer-
ence ingroup. Last, for investigation of introgression of Natural populations
into Essex (var. tuberculatus into var. rudis), we used Missouri as the reference
ingroup. To get CIs for the f statistic estimates, we performed jackknifing by
calculating pseudovalues by removing one 250-kb block at a time.

For the outlier analysis of putative genes underlying contemporary agri-
cultural adaptation in Walpole, we analyzed genome-wide differentiation
(Fst) in 10-kb windows, and classified windows as outliers when they were in
the top 1% for extreme differentiation. A GO enrichment test was then
performed for these outlier regions, after finding their intersecting anno-
tated A. tuberculatus genes, and their orthologs in A. thaliana using
orthofinder (65). To look at the possibility of gene expansion in these
enriched gene families, we first characterized normalized copy number in
100-bp windows within each annotated gene in that family, for every indi-
vidual. We then characterized the median copy number across windows within
each gene for each individual, as heterogeneous mapping of paralogs/

orthologs due to differential levels of degeneration should lead to variation
in copy number across windows within the gene. We then compared the
distribution of the median copy number between Walpole and Natural
population individuals for every gene. We tested whether the distribution of
median copy number of each gene differed consistently across all genes and
between Walpole and Natural populations by performing an ANOVA of
region and gene ID, and allowing for an interaction. Scripts and code are
available at https://github.com/jkreinz/Amaranthus-population-genomics (66).

Detecting Selective Sweeps and Estimating Recombination Rate. To detect
differences in the strength and breadth of sweep signal associated with
selection from glyphosate across geographic regions, we used SNPs called
from the pseudoassembly of our A. tuberculatus reference. Sweep detection
can be strongly influenced by heterogeneity in recombination rate, and so as
a control (in our Sweepfinder2 and XPEHH analyses), we used the interval
function in LDhat (67) to estimate variable recombination rate indepen-
dently across all 16 chromosomes of the pseudoassembly, using a pre-
computed lookup table for a θ of 0.01 for 192 chromosomes. Accordingly, we
randomly subsetted individuals to retain only 96 individuals for computation
of recombination rate estimates, which was implemented by segmenting
the genome into 2,000 SNP windows, following the workflow outline in
https://github.com/QuentinRougemont/LDhat_workflow.

To account for the fact that high-copy number loci may allow for increased
diversity relative to single-copy regions, we randomly sampled 1 allele per locus
along the length of chromosome 5 to create pseudohaploid haplotypes for our
sweep scans. This ensures that any increased differentiation is due to differ-
ences among individuals, rather than amonghaplotypeswithin individuals. The
XP-EHH scan (35), calculated based on the difference in haplotype homozy-
gosity between amplified and nonamplified individuals for each geographic
region after controlling for recombination rate, was implemented in selscan
(68). Scripts available at https://github.com/simonhmartin/genomics_general
were used for calculating differentiation and the difference in diversity.
Pseudohaploid haplotypes were also used to calculate a maximum-likelihood
tree for the 235 SNPs in EPSPS. For each tree, we realigned sequences before
bootstrapping 1,000 replicates of our haplotree with clustal omega (69). In
contrast to haplotype-based methods that required phased data, we also
ran Sweepfinder2 (33, 34), a program that compares the likelihood of a
selective skew in the site frequency spectrum (SFS) at focal windows com-
pared to the background SFS while controlling for heterogeneity in re-
combination rate. The SFSs of 10-kb windows across chromosome 5 were
compared to the genome-wide SFSs at 4-fold degenerate sites, that for this
analysis, was also randomly sampled for 1 allele per locus, for an equivalent
comparison of the SFS. Last, we investigated similarity in the EPSPS ampli-
fication within and among populations and regions by estimating the
Spearman’s rank correlation coefficient for all pairwise comparisons of re-
sistant, amplification-containing individuals. This was done for the 1-Mb
region surrounding EPSPS.
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Abstract Causal mutations and their frequency in agricultural fields are well- characterized for 
herbicide resistance. However, we still lack understanding of their evolutionary history: the extent 
of parallelism in the origins of target- site resistance (TSR), how long these mutations persist, how 
quickly they spread, and allelic interactions that mediate their selective advantage. We addressed 
these questions with genomic data from 19 agricultural populations of common waterhemp 
(Amaranthus tuberculatus), which we show to have undergone a massive expansion over the past 
century, with a contemporary effective population size estimate of 8 x 107. We found variation at 
seven characterized TSR loci, two of which had multiple amino acid substitutions, and three of which 
were common. These three common resistance variants show extreme parallelism in their mutational 
origins, with gene flow having shaped their distribution across the landscape. Allele age estimates 
supported a strong role of adaptation from de novo mutations, with a median age of 30 suggesting 
that most resistance alleles arose soon after the onset of herbicide use. However, resistant lineages 
varied in both their age and evidence for selection over two different timescales, implying consid-
erable heterogeneity in the forces that govern their persistence. Two such forces are intra- and 
inter- locus allelic interactions; we report a signal of extended haplotype competition between two 
common TSR alleles, and extreme linkage with genome- wide alleles with known functions in resis-
tance adaptation. Together, this work reveals a remarkable example of spatial parallel evolution in a 
metapopulation, with important implications for the management of herbicide resistance.
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tance mutations have evolved multiple times in parallel.
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Introduction
The evolution of resistance in agricultural pest populations occurs rapidly and repeatedly in response 
to herbicide and pesticide applications. Reports of herbicide resistance across agricultural landscapes 
have been steadily growing, threatening crop productivity and greatly raising costs for agricultural 
production (Peterson et  al., 2018). These reports put a lower limit on the estimated number of 
unique resistance cases—over 500 across the globe—based on just the occurrence of resistance to 
different herbicide modes- of- action across different species (Heap, 2014) and barring the probably 
minor role of interspecific hybridization. For acetolactate synthase (ALS) inhibiting herbicides alone, 
over 160 species have evolved resistance since the first report in 1986, which was only five years after 
their initial introduction (Comai and Stalker, 1986; Heap, 2014; Whitcomb, 1999). These numbers 
are likely a vast underestimate of the repeatability of herbicide resistance evolution. For ALS herbi-
cides, for example, non- synonymous substitutions at eight distinct codons confer resistance, with 
most of them found in multiple species (Tranel and Wright, 2002), and with multiple independent 
causal mutations often occurring in the same population (Heap, 2014; Kreiner et al., 2018). In addi-
tion to repeated resistance evolution through distinct causal resistance loci, it is likely that for a single 
locus, resistance mutations have arisen repeatedly within a species (Kreiner et al., 2019). While these 
observations suggest herbicide resistance may be among the most extreme cases of contemporary 
parallel evolution in plants, it remains unclear how often resistance is spread across the range through 
gene flow versus repeated independent origins.

Population genomic approaches can greatly help to understand the origin and spread of herbicide 
resistance. Genomic methods have tested for differences in population structure among resistant and 
susceptible agricultural populations (Küpper et al., 2018), reconstructed complex genomic regions 
associated with resistance (Molin et al., 2017), and investigated patterns of selection on and the 
extent of convergence between loci conferring non- target site resistance (Kreiner et al., 2020; Van 
Etten et al., 2019). But even for validated resistance mutations that occur within the gene whose 
product is targeted by the herbicide (target- site resistance [TSR] mutations), investigations of their 
recent evolutionary history are sparse (but see Flood et al., 2016; Kreiner et al., 2019). With large- 
effect mutations identified as being causal for conferring target- site resistance to nine herbicides at 19 
loci across many species (Murphy and Tranel, 2019), the field is ripe for the application of population 
genomic techniques for resolving the evolutionary history of herbicide resistance and informing inte-
grative management strategies in weed populations.

In contrast to most of the selective sweep literature coming from within- host studies of drug resis-
tance in HIV (e.g. Feder et al., 2016; Pennings et al., 2014)—where sweeps occur in a closed- system, 
often starting from a single founding viral lineage and evolving within individual patients—evolu-
tionary patterns of resistance to herbicides across a relevant agricultural landscape are by no means 
expected to be as tidy (but see Feder et al., 2017; Feder et al., 2019 for spatial structure in HIV 
evolution). Weedy agricultural populations themselves, or at least genotype compositions, may be 
transient in space and time due to widespread gene flow and changing selection regimes through 
rotations of both focal crops and herbicide applications (Holst et al., 2007; Naylor, 2003; Neve et al., 
2009). Consequently, persistent agricultural weed populations likely comprise a collection of resistant 
haplotypes that have arisen and dispersed across the landscape, following a model of spatial parallel 
mutation in an interconnected network of populations (Ralph and Coop, 2010). Recent population 
genomic evidence supports this prediction for a subset of newly problematic glyphosate- resistant 
agricultural populations of common waterhemp (Amaranthus tuberculatus) in Ontario, Canada, where 
both multiple origins and long- distance dispersal contributed to the spread of glyphosate resistance 
(Kreiner et al., 2019).

Amaranthus tuberculatus is a major challenge for agricultural practices in the Midwestern US, and 
is among the most problematic weeds worldwide in terms of its capacity for evolving resistance to 
multiple herbicides (Tranel, 2021). Conforming to classic hypotheses about successful weeds (Baker, 
1974), the species has large census population sizes, a widespread distribution, and considerable 
seedbanks (Costea et al., 2005). The dioecious, wind- pollinated A. tuberculatus additionally offers 
an obligately outcrossing mating system, providing more independent backgrounds on which new 
mutations can arise (Costea et al., 2005; Kreiner et al., 2018) and an effective dispersal system (Liu 
et al., 2017). The species has not always been troublesome—the plant is native to North America, 
where it likely has grown in riparian habitats long before the advent of modern agriculture (Sauer, 
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1957). While it persists in these habitats, in the past 100 years or so, A. tuberculatus has become 
strongly associated with agricultural fields (Costea et al., 2005; Tranel and Trucco, 2009). Over the 
past three decades, A. tuberculatus has evolved resistance to seven chemical modes- of- action (Heap, 
2021; Tranel, 2021), including resistance to both ALS- inhibiting herbicides and protoporphyrinogen 
oxidase (PPO)- inhibiting herbicides (Shoup et al., 2003).

ALS- inhibiting herbicides have been among the most popular mode- of- action for weed control 
in crops since their introduction in the 1980s (Brown, 1990), and are widely used in both corn and 
soy production systems. They were rapidly adopted due to their application rates being an order of 
magnitude lower than previous herbicides and thus increased affordability, along with low toxicity 
and broad- spectrum weed control (Mazur and Falco, 1989), but quickly became notorious for their 
ability to select for resistant weeds (Tranel and Wright, 2002). Use of ALS herbicides thus decreased 
in the 1990s, coinciding with the widespread adoption of Round- up ready cropping systems, of which 
glyphosate herbicides are an essential component (Green, 2007). While historically not as popular 
as ALS- inhibiting herbicides, PPO- inhibiting herbicides have been used for nearly 50 years for the 
control of dicotyledonous (broadleaf) weeds, at its peak in the early 1990s representing 10% of annual 
applications in the USA but dropping to 1.5% by 2006 (U.S. Department of Agriculture, National 
Agricultural Statistics Service (USDA- NASS), 2012). However, PPO- inhibiting herbicides have since 
seen a resurgence for control of weeds that have evolved resistance to heavily- used herbicides such 
as glyphosate and ALS inhibitors (Dayan et al., 2018; Tranel, 2021; Tranel and Wright, 2002; Zhao 
et al., 2020).

Here, we investigate the evolutionary histories of mutations that have been previously demon-
strated to confer target- site resistance in A. tuberculatus, focusing on TSR mutations within ALS and 
PPO. We infer the number of TSR mutational origins across populations and their distribution across 
the landscape, examining the signals left behind by both mutation and recombination. Specifically, we 
implement a method that infers the ancestral recombination graph (ARG) and that offers a powerful 
approach for inference of selective history, by providing near- complete information on relatedness 
among haplotypes (Rasmussen et al., 2014). Coupled with estimates of effective population size (Ne) 
through time based on coalescent rates across the genome (Speidel et al., 2019), these methods 
allow for powerful hypothesis testing on the role of standing variation versus new mutation. We assess 
heterogeneity in whether independent resistant lineages are associated with pronounced signals of 
selection based on a tree- based test and selective sweep signals, some of which may be mediated 
by intra- and inter- locus allelic interactions. We also examine signatures of the haplotype competition 
between common ALS resistance alleles, and the extent that extreme selection from herbicides on 
TSR mutations has impacted diversity across the genome. Our detailed population genomic anal-
ysis describing the repeatability of and heterogeneity in target- site herbicide resistance evolution 
advances our understanding of rapid adaptation of multicellular organisms to extreme selective pres-
sure, while providing evolutionary informed priorities for agricultural weed management.

Results
Types of target-site mutations 

To test hypotheses about the origins of TSR in Amaranthus tuberculatus, we used whole- genome 
sequence information from 19 agricultural fields in the Midwestern US and Southwestern Ontario, 
Canada. It is important to note that these populations were obtained from fields where A. tubercu-
latus was only poorly controlled, potentially overrepresenting the frequency of resistance across the 
landscape.

Having previously characterized two types of target- site glyphosate resistance in these samples 
(coding sequence substitutions and gene amplification; Kreiner et al., 2019), here we focus on all 
other characterized mutations known to confer resistance in the genus Amaranthus. We examined our 
sequence data for the presence of eight such substitutions in ALS, three in PPO, and one in photo-
system II protein D1 (psbA - the target of a class of herbicides that inhibits electron transfer). Across 
152 individuals, we found segregating variation at six out of eight known ALS mutations, and one of 
the three known PPO mutations (Table 1). We did not find any mutation in psbA.

https://doi.org/10.7554/eLife.70242
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The nine unique PPO and ALS target- site resistant mutations occur at seven distinct codons, with 
two positions segregating for multiallelic resistance: two non- synonymous changes at codons 197 and 
653 in the ALS gene. Six out of nine variants are rare, with five or fewer instances, in contrast to the 
common Trp- 574- Leu and Ser- 653- Asn nonsynonymous substitutions in ALS, and the PPO ∆Gly210 
deletion (Table 1). Notably, the most common resistance mutation (referring to identity- by- state), Trp- 
574- Leu, is found in 53% of agricultural individuals, and the second most common, Ser- 653- Asn, in 
32% of individuals (Table 1). From these two most frequent ALS mutations alone, 74% of individuals 
sampled had resistance to ALS- inhibiting herbicides. Accounting for rare ALS resistance mutations 
only increases this percentage to 75%, because these rare variants are almost exclusively found in 
individuals already harboring one of the two common ALS mutations.

Regardless of the geographic region (within Essex County, Walpole Island, and the Midwestern US), 
multiple causal changes confer ALS resistance. Furthermore, the majority of populations (5/8 popu-
lations within the Midwestern US, 5/5 populations in Essex County, and 4/6 populations in Walpole) 
harbor multiple causal ALS mutations (Table 1). Thus, at just the level of these distinct mutational 
types, we observe genetic convergence in adaptation to ALS- inhibiting herbicides at global, regional, 
and population scales.

Regional selective sweep signals
To learn how and how often the individual mutations might have arisen, we first visualized regional 
selective sweep patterns at PPO and ALS genes—two genes that are located only ~250 kb apart in 
the genome—with respect to the common Trp- 574- Leu, Ser- 653- Asn, ∆Gly210 alleles. In particular, we 
assayed the extent to which selection from herbicides at these genes has led to reductions in diversity, 
and increases in homozygosity and linkage across the haplotype, as would be expected if TSR alleles 
have increased in frequency rapidly enough that recombination has yet to unlink these alleles from the 
background on which they arose. We found that corresponding selective sweep signals appear to be 
highly heterogeneous across geographic regions and across resistance mutations (Figure 1). The most 
pronounced selective sweep signal at the regional level is for the ALS Ser- 653- Asn mutation, in our 
large collection of nearby populations from Essex County. These resistant haplotypes show a dramatic 

Figure 1. Sweep- scan summary statistics by geographic region. (Left) Difference in integrated haplotype homozygosities (XPEHH) between haplotypes 
carrying the focal TSR mutation and susceptible haplotypes. (Middle) Difference in mean pairwise diversity between haplotypes carrying the focal TSR 
mutation and susceptible haplotypes. (Right) r2 of other missense mutations with focal TSR mutation on genotype, rather than haplotype data. In all 
columns, dashed vertical lines denote PPO (left) and ALS (right) genes, which are only 250kb apart in the genome.

https://doi.org/10.7554/eLife.70242
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excess of homozygosity over susceptible haplotypes for nearly 10  Mb (XPEHH, Figure  1 top- left 
green line). The breadth of the impact of selection on local chromosome- wide linkage disequilibrium 
(LD) is worth noting—this extended sweep signal is even larger than what was seen for an EPSPS- 
related gene amplification whose selective sweep in response to glyphosate herbicides spanned 
6.5 Mb in these same individuals (Kreiner et al., 2019). This pattern of a hard selective sweep is also 
apparent in patterns of pairwise diversity and in LD of the focal Ser- 653- Asn mutation with missense 
SNPs (r2) (Figure 1, top middle/right). In contrast, the Trp- 574- Leu mutation in Essex actually shows a 
slight excess of heterozygosity and excess diversity compared to susceptible haplotypes, but nearly 
as strong LD with other missense SNPs (Figure 1, purple line top row).

Selective sweep signals are much subtler in Walpole and especially in the Midwestern US compared 
to Essex. In Walpole as in Essex, ALS resistance shows a stronger signal of selection for Ser- 653- Asn 
than for Trp- 574- Leu, whereas signatures of selection for either mutation are almost completely 
lacking from the Midwestern US except for a slight peak in r2 for ALS Ser- 653- Asn. The PPO ∆Gly210 
mutation is found at considerable frequencies only in the Midwestern US, but regional sweep signals 
based on homozygosity, diversity, and LD are absent with respect to the deletion (Figure 1, pink line 
bottom row).

Despite inconsistent sweep signals, the mutations we describe here are extremely likely to have 
experienced selection over their history, but varying over space and time. We know from previous 
functional validation that these mutations are causal for resistance to ALS or PPO inhibiting herbicides 
[in Amaranthus tuberculatus for the PPO deletion, as well as ALS Trp- 574- Leu, and both Ser- 653- Asn 
and Ser- 653- Thr substitutions (Foes et al., 2017; Patzoldt and Tranel, 2017; Shoup et al., 2003), 
and in congeners for the remaining mutations (McNaughton et al., 2001; Nakka et al., 2017; Singh 
et al., 2018; Whaley et al., 2004)]. Thus, we set out to identify the extent to which repeated origins 
and gene flow have influenced regional signatures of selection, as well as identify key processes that 
may underlie heterogeneity in their recent evolutionary histories.

Inferring the genealogical history of target-site resistance mutations
We first took a gene tree approach to reconstruct the evolutionary history of TSR mutations, based on 
phased haplotypes inferred from performing the most up- to- date joint population and read- backed 
phasing methods (SHAPEIT4 Delaneau et al., 2019; WhatsHap v1.0 Martin et al., 2016). We found 
that patterns of similarity among phased haplotypes at ALS and PPO (including 5 kb upstream and 
downstream of either gene) indicated numerous origins for every common resistance mutation: PPO 
∆Gly210, ALS Trp- 574- Leu, and Ser- 653- Asn (Figure 2—figure supplement 1). A gene tree based on 
raw pairwise differences between haplotypes, as illustrated here, sets an upper limit on the number of 
independent origins for each mutation. Because recombination causes ancestral haplotypes to decay 
in size as they are passed down through time, linked sites may not necessarily have identical geneal-
ogies as a single mutational origin may be recombined onto distinct haplotypes. In cases such as this, 
ancestral recombination graphs (ARGs) can allow for more accurate inferences of genealogical history 
by generalizing the inference of coalescent history along a recombining unit (Griffiths and Marjoram, 
1997; Griffiths and Marjoram, 1996; Hudson, 1983).

We reconstructed the ARG for 20,000 SNPs encompassing both ALS and PPO genes (a ~ 1 and ~ 
10 kb gene, respectively, separated by 250 kb on the same chromosome) using ARGweaver (Hubisz 
and Siepel, 2020; Rasmussen et al., 2014). We assessed the likelihood of the ARG inferences under 
varying constant recombination rates and over two time step parameters (Figure 2—figure supple-
ments 2 and 3). From our most likely parameter values (recombination = 10–8, time steps = 30), and 
based on the MCMC sample that maximizes the likelihood of our data across 1,250 iterations, we 
extracted the tree corresponding to each focal TSR locus. For all three common TSR mutations, ALS 
Trp- 574- Leu, ALS Ser- 653- Asn, and PPO ∆Gly210, we found evidence for multiple independent origins 
producing the same resistant variant—three for ALS Trp- 574- Leu, two for ALS Ser- 653- Asn, and two for 
PPO ∆Gly210 (Figure 2A). Support for these origins was generally very high, with 5/7 origins showing 
that 100% of MCMC samples were consistent with each cluster of haplotypes being monophyletic. 
The two origins with less than full support were haplotypes harbouring the ALS Trp- 574- Leu, where 
one high- frequency origin had 85% support (105/125 MCMC samples) and a low- frequency origin 
had 45% support (56/125), implying that occasionally haplotypes mapping to these origins belonged 
to other groupings across MCMC samples. The findings of multiple origins of identical resistance 
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Figure 2. Repeated- independent origins and range- wide distribution of three target- site resistance mutations, along with their associated signi"cance 
of selection over two different timescales. (A) Trees at focal TSR loci corresponding to an ARG estimated across 20 kb SNPs. Bold numbers around 
trees identify clusters of resistant haplotypes consistent with independent origins. The presence of an asterisk at each origin number implies signi"cant 
evidence of selection since the mutation arose de novo at p < 0.05 against the null distribution, as in C. Support for monophyly for each origin across 
125 samples of 1250 MCMC iterations is depicted by the fraction found outside each cluster. (B) Geographic distribution of haplotypes originating from 
distinct mutational lineages as inferred from A. TSR mutational lineages are found across numerous populations and agricultural regions, although 
regions show clear differences in the frequency of some mutations. (C) Results of tree- based tests of non- neutral allele frequency change (Speidel et al., 
2019) from each mutational origin of TSR under two alternative models of selection; selection on a mutation since its origin versus selection over more 
recent timescales (on the last 0.01% of the tree). The horizontal dashed line denotes the p- value cutoff of α = 0.05, after false discovery rate correction.

The online version of this article includes the following source data and "gure supplement(s) for "gure 2:

Source data 1. Tree- based coalescent test for selection under two scenarios; selection on since the mutation "rst arose and selection even more recent 

Figure 2 continued on next page
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mutations, and most specific origin scenarios, are consistent even across less likely recombination 
rate parameterizations (Figure 2—figure supplements 2 and 3). Compared to the gene trees based 
on the average mutational history across the PPO and ALS (Figure 2—figure supplements 1 and 4), 
accounting for recombination has clearly further resolved the origins of these target- site resistance 
alleles. In comparison to susceptible haplotypes, resistant haplotypes at each origin are apparently 
more homozygous but retain some diversity, presumably driven by both mutation and recombination 
subsequent to their origin (Figure 2—figure supplements 4–6).

When haplotypes belonging to distinct mutational lineages are mapped across populations 
(Figure 2B), it is clear that, despite the many independent origins, gene flow has also played a major 
role in the spread of resistance across the landscape. Haplotypes from the three most common origins 
of resistance to ALS herbicides —Trp- 574- Leu #1, #2, and Ser- 653- Asn #5 (corresponding to 39, 25, 
and 47 haplotypes, respectively)—were identified in 15, 10, and 14 populations. To test if mutational 
lineages were more geographically structured than expected given their frequency, we performed a 
permutation of haplotype assignment to a geographic region. All but two mutational lineages were 
consistent with expectations under this null, suggesting near panmixia between the Midwestern US 
and Ontario (Essex + Walpole) for most resistant lineages. The exceptions were ALS Trp- 574- Leu 
#2, which is exclusive to the Midwestern US (44/47 resistant haplotypes mapping to the Midwest or 
94%; 95% CIs of regional permutations [0.383,0.638]), and Ser- 653- Asn #5, which is at a much higher 
frequency in Ontario populations (87% found in either Essex or Walpole; 95% CIs of regional permu-
tation [0.370, 0.630]), suggesting that these mutations arose locally in these geographic regions and 
have not yet had the chance to spread extensively.

We next performed a tree- based test of non- neutral allele frequency change to examine whether 
TSR alleles have experienced consistent or shifting selection over their histories. Specifically, we 
implemented a tree- based statistic that relies on the order of coalescent events (Speidel et al., 2019), 
in addition to a modified version of this statistic that evaluates the probability of selection on more 
recent timescales (Materials and methods, Tree- based tests for selection). We approached these tests 
of selection one unique mutational origin at a time, excluding all other resistant lineages from the tree, 
such that our estimates of the probability of selection for a given mutational origin are relative to all 
other susceptible lineages.

Under the scenario of consistent selection since the origin of the mutation, four out of seven muta-
tional origins we tested were significant at α = 0.05 after a 5% false discovery rate (FDR) correction 
(Figure 2C, Figure 2—source data 1). Since it arose, the Midwestern US high- frequency ALS Trp- 
574- Leu #2 variant showed the strongest signature of selection across all origins and all resistant loci 
(p = 0.0058), followed by the widespread high- frequency ALS Trp- 574- Leu #1 variant (p = 0.0089), 

timescales (i.e.the last 1% of the tree).

Source data 2. Tree sequence corresponding to ALS Trp- 574- Leu, ALS Ser- 653- Asn, and PPO ∆Gly210 extracted from the most likely iteration of the 
ARGweaver MCMC.

Source data 3. Resistance status at ALS Trp- 574- Leu, ALS Ser- 653- Asn, and PPO ∆Gly210 for haplotypes mapped in Figure 2.

Figure supplement 1. Bootstrapped gene trees of ALS (3 kb) and PPO (10 kb) (coding sequence + 1 kb on either side) alongside TSR mutations across 
all 162 individuals.

Figure supplement 2. The in$uence of both the number of timesteps coalescent events are estimated over (t) and constant recombination rate 
magnitude (r) on ARG likelihood across 1250 MCMC iterations.

Figure supplement 3. At the most likely number of (timesteps = 30), the in$uence of increasing the recombination rate parameter constant value from r 
= e-7 to r = e–9 on the tree sequence inference from the most likely ARG.

Figure supplement 4. Phased haplotypes corresponding to distinct origins of target- site resistance mutations at the ALS Trp- 574- Leu (Left side, grey 
vertical dashed line), ALS Ser- 653- Asn (left side, black vertical dashed line) and PPO ∆Gly210 (right side, dashed vertical white line) positions, relative to 
susceptible lineages.

Figure supplement 5. XPEHH, cross- population extended haplotype homozygosity, for haplotypes mapping to each origin of ALS Trp- 574- Leu, ALS 
Ser- 653- Asn, and PPO ∆Gly210 (1–7, top to bottom, plus unplaced PPO ∆Gly210 haplotypes as the last row) in comparison to susceptible haplotypes.

Figure supplement 6. H12, homozygosity of the two most common haplotypes, for each origin of ALS Trp- 574- Leu, ALS Ser- 653- Asn, and PPO ∆Gly210 
(1–7, top to bottom, plus unplaced PPO ∆Gly210 haplotypes as the last row).

Figure 2 continued
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the common Midwestern US PPO variant #7 (p = 0.00434), and lastly, the high- frequency Ontario ALS 
Ser- 653- Asn #5 variant (p = 0.02831).

In addition, a test for selection over the most recent 1% of the tree showed that for three of the 
five selected lineages that predated this time cutoff, there is even stronger evidence for selection on 
more recent timescales, after FDR correction (Figure 2C, Figure 2—source data 1). The most obvious 
of these is the ALS Ser- 653- Asn variant #5, which, while having the weakest evidence of consistent 
selection over its history, shows the strongest evidence of selection over recent timescales (p = 3.44 
× 10–7). These tests therefore illustrate a strong role for fluctuating selection, intensifying over recent 
timescales.

While our previous test provides insight into the consistency of selection across the course of a 
mutational lineage’s history, a conceptually related approach is to directly assess the role of resistance 
adaptation from standing genetic variation or new mutation based on allele age estimates relative to 
the onset of the selection. Allele age estimates depend greatly on the accuracy of effective population 
size estimates over the relevant evolutionary timescale. Namely, for herbicide resistance evolution, 
we posit that the relevant Ne is most likely the effective population size over the last half- century 
or less, corresponding with the introduction of agronomic pesticide regimes. While we have previ-
ously used δaδi (Gutenkunst et al., 2009) to model species- wide demography in a two- epoch model 
and found a large population size expansion (historical epoch Ne ~500,000; recent epoch var. rudis 
Ne ~5,000,000; Kreiner et al., 2019), we now used Relate to infer effective population size through 
time from genome- wide tree sequence data on even more recent timescales (Speidel et al., 2021; 
Speidel et al., 2019). Historical Ne between 100 and 1,000,000 years ago appears to have stayed rela-
tively consistent, with a harmonic mean of ~63,000 (standard error across chromosomes ± 7000 years) 
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Figure 3. Contemporary population expansion of A. tuberculatus and corresponding ages of TSR variants. (A) Relate- inferred effective population 
size through time, illustrating a remarkable population expansion occurring over the last 100 years. The bold line indicates results from genome- wide 
SNPs, whereas thinner lines represent results from chromosome- by- chromosome analyses, with the shaded area showing the bounds of the variance 
in the chromosome- by- chromosome data. (B) Allele age inferred from the geometric mean effective population size estimate over the timescale of 
contemporary herbicide use ( < 50 years ago, GM[Ne] = 83,294,700). Horizontal dashed lines for ALS Trp- 574- Leu and ALS Ser- 653- Asn, and PPO origins 
represent the approximate onset of ALS and PPO herbicide use, respectively.

The online version of this article includes the following source data for "gure 3:

Source data 1. Effective population size estimates for each chromosome, and genome- wide, from Relate.

Source data 2. Unscaled allele age estimates corresponding to the seven inferred origins of ALS Trp- 574- Leu, ALS Ser- 653- Asn, and PPO ∆Gly210.
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(Figure 3A). However, our samples show evidence for massive recent population expansion over the 
last 100 years, with the contemporary geometric mean Ne estimate 3–4 orders of magnitude higher 
than the historical Ne (Figure 3A)—80,000,000 over the timescale of ALS herbicide use (approximately 
the last 40 years).

Based on our contemporary Ne estimates relevant to the timescale of herbicide use, we rescaled 
allelic ages for distinct mutational origins across our ARG- inferred trees, accounting for variation across 
1250 MCMC ancestral recombination graph iterations. We found considerable variation in the esti-
mated age of resistance mutations across distinct lineages of the same mutation and across the three 
different TSR loci, according to haplotype groupings from the most likely ARG (Figure 3B). Across 
all mutational lineages, even for those with slightly lower support for monophyly (ALS Trp- 574- Leu 
#1, #3), the 95% confidence interval of allele ages show these estimates are highly consistent across 
MCMC sampling of the ARG (Figure 3B). Our estimates of the age of the PPO ∆Gly210 lineages are 
extremely recent and much less variable compared to ALS Trp- 574- Leu and ALS Ser- 653- Asn lineages 
(median PPO ∆Gly210 age = 3.7 years [SE = 0.2]; ALS Ser- 653- Asn = 37.8 [SE = 7.1]; ALS Trp- 574- Leu 
= 37.2 [SE = 106.3]). With ALS- inhibiting herbicides having been introduced in the early 1980s, only 
one lineage (ALS Trp- 574- Leu #3) appears to substantially predate herbicide, with an estimated age 
of ~350 years. However, this lineage is also the one with the least support for monophyly, which will 
upwardly bias estimates of allele age. Thus, while the exact timescales highly depend on accurate 
estimation of contemporary effective population sizes, the results are generally consistent with most 
mutations arising very recently after the onset of herbicide use.

In aggregate, our analyses have uncovered multiple independent origins of large- effect resistance 
mutations, along with heterogeneity in their evolutionary histories, from the timescale over which they 
have persisted to their associated signatures of selection. The spread of these parallel origins across 
the landscape further allows us to observe how these alleles interact when they meet (Ralph and 
Coop, 2010), and how this interaction may be modified by other alleles across the genome.

Haplotype competition and inter-locus interactions of target-site 
resistance mutations
While 16 individuals harbour both the common ALS Trp- 574- Leu and ALS Ser- 653- Asn mutations, 
haplotype- level analyses indicate that no single haplotype harbours both mutations (Figure 2—figure 
supplements 1 and 4). This lack of double resistant haplotypes is a strong violation of expectations 
under linkage equilibrium (χ2

df=1 = 16.18, p = 5.77 × 10–5), further suggesting that no or very little 
recombination has occurred between these sites. Given how globally common these resistance alleles 
are (Table 1; 53% and 32% of individuals harbour ALS Trp- 574- Leu or Ser- 653- Asn), their coexistence, 
yet independence, suggests that allelic competition may be important in adaptation to ALS- inhibiting 
herbicides.

Locally in Essex, where haplotypes carrying either the ALS Trp- 574- Leu or ALS Ser- 653- Asn muta-
tions segregate at intermediate frequencies (29% and 44% respectively; Table  1), signed linkage 
disequilibrium (LD) between genotypes at these two sites is considerably negative (r = –0.67). In 
comparison to other non- synonymous SNPs at similar frequencies (minor allele frequency > 0.20) and 
separated by similar distances (≤ 500 bp) across the genome, this level of repulsion is unexpected 
(one- tailed p = 0.033; Figure 4—figure supplement 1). However, this repulsion is not restricted to 
these two resistance mutations, which are only 237 bp apart. Rather, when we visualized the distribu-
tion of signed LD between all bi- allelic missense SNPs around the ALS locus, and the two TSR muta-
tions, we observed a predominance of positive association with the focal ALS Trp- 574- Leu mutation 
(n = 19), but a negative association with the ALS Ser- 653- Asn mutation (n = 34), across an extended 
10 Mb region (Figure 4A). This long- range repulsion is not seen for other pairs of loci that are outliers 
for particularly strong repulsion within 500 bps (Figure 4—figure supplement 2). The divergence 
associated with these two TSR mutations segregating in Essex is also apparent with a genotype- based 
PCA—structure that is otherwise absent across the genome (Figure 4B, Figure 4—figure supple-
ment 3). Together, this indicates that selection for these alternative resistance variants from ALS- 
inhibiting herbicides within Essex must occur through the competition of extended haplotypes up to 
⅓ the size of this focal chromosome.

While the competition of haplotypes harbouring these TSR mutations may be important for 
shaping the distribution of resistance alleles across populations, the selective advantage of a given 
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Figure 4. Signals of intra- and inter- chromosomal allelic interactions with target- site resistance mutations. (A) The breadth of haplotype competition 
between TSR mutations, illustrated by repulsion linkage disequilibrium (opposite signed LD, r) between two target- site- resistance mutations and bi- 
allelic missense SNPs surrounding them on Scaffold 11 in Essex. Each point shows mean LD in non- overlapping 10 kb windows. A smoothing spline 
shows that missense SNPs tend to be in positive LD with ALS Trp- 574- Leu but negative LD with ALS Ser- 653- Asn in Essex. (B) Signatures of population 
structure for 2 Mb around ALS compared to genome- wide, based on PCAs of genotypes in Essex. Ellipses represent 95% CIs assuming a multivariate 
distribution. (C) Distribution of mean signed LD of ALS TSR resistance mutations (ALS 574 or 653) with 1 Mb windows genome- wide in Essex, excluding 
the ALS containing Scaffold 11. Upper and lower 1% quantile indicated by dashed vertical lines. (D) Distribution of p- values from top 2% of genome- 
wide windows with high absolute signed LD with ALS TSR mutations, from permuting individual assignment within genomic windows and recalculating 
LD 1,000 times. (E) GO terms signi"cantly enriched for biological process after FDR correction from the set of 348 genes mapping to the top 13, 1 Mb 
windows that show signi"cantly extreme LD with ALS TSR mutations in Essex. Number of asterisks represent signi"cance level after bonferroni correction 
(** = p < 0.01, * = p < 0.05).

The online version of this article includes the following source data and "gure supplement(s) for "gure 4:

Source data 1. Signed LD in 1 kb windows with two target- site- resistance mutations and bi- allelic missense SNPs surrounding them on Scaffold 11 in 
Essex.

Source data 2. Local PCA at 2 Mb around ALS, along with a genome- wide PCA (excluding the ALS containing scaffold 11), in Essex.

Source data 3. Signed LD of 1 Mb windows across the genome (aside from scaffold 11) with either ALS Trp- 574- Leu and ALS Ser- 653- Asn.

Figure supplement 1. Signed LD (r) between pairs of missense (nonsynonymous) and synonymous SNPs of similar frequency (minor allele frequency > 
0.20) and physical distance ( < 500 bp) as ALS Trp- 574- Leu and ALS Ser- 653- Asn across the genome.

Figure supplement 2. Examples of the extent of extended repulsion elsewhere across the genome, for pairwise comparisons in Figure 4—figure 
supplement 1 that were more extreme than observed.

Figure supplement 3. Signature of population structure for 10 Mb around ALS based on PCAs of genotypes in Essex.

Figure supplement 4. Correlation of signed LD (r) between two target- site resistance mutations, and synonymous or missense mutations across the 
genome.

https://doi.org/10.7554/eLife.70242
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TSR haplotype may also depend on other modifier loci across the genome. In particular, we might 
expect that individuals that have withstood many generations of herbicide applications due to large- 
effect resistance mutations may have also accumulated compensatory and tolerance- conferring muta-
tions across the genome (stacking of resistance alleles; Busi et al., 2013; ffrench- Constant et al., 
2004; Kreiner et al., 2020; Petit et al., 2010; Preston, 2003). Considering that haplotype competi-
tion seems to have manifested itself in patterns of signed LD within the ALS containing chromosome, 
we posited that physically unlinked modifiers of resistance (Busi et al., 2013; ffrench- Constant et al., 
2004; Kreiner et al., 2020; Petit et al., 2010; Preston, 2003) could be identified due to strong 
linkage with focal TSR loci.

To identify such interactions in populations in Essex, we calculated mean signed LD between focal 
ALS Trp- 574- Leu or ALS Ser- 653- Asn mutations and bi- allelic missense alleles in 1 Mb non- overlapping 
windows across the genome in Essex (Figure 4C). We then focused on the upper 1% and lower 1% 
of windows with particularly extreme signed LD with either TSR mutation (24/1156 1 Mb windows). 
On each outlier window, we performed a permutation in which we randomized TSR allele assignment 
among individuals 1000 times, to test whether observed LD with resistance genotypes was more 
extreme than expected. Compared to the null expectation, the 1  Mb window with the strongest 
ALS TSR association showed a significant excess of positive inter- chromosomal signed LD with ALS 
Trp- 574- Leu (one- tailed p < 0.0001, r = + 0.068) but negative signed LD with respect to the ALS Ser- 
653- Asn mutation (r = –0.132), consistent with repulsion between TSR alleles. Upon further inspection, 
this 1 Mb region is directly centred on a cytochrome P450 gene, CYP82D47, that has been implicated 
in conferring non- target site resistance in Ipomoea purpurea (Leslie and Baucom, 2014).

Of the 24 outlier windows, 13 had p- values consistent with significantly extreme LD with TSR loci 
after FDR correction at α = 0.05 (Figure 4D). These 13 windows included 348 genes, 120 of which have 
Arabidopsis thaliana orthologs. These 120 orthologs were enriched for six GO biological processes 
belonging to two unique hierarchical categories after FDR correction, four of which were enriched 
even after Bonferroni correction: cellular amine and amino acid metabolic process, programmed cell 
death, and plant- type hypersensitive response (Figure 4E), seemingly directly related to the function 
of ALS—amino acid synthesis. Two particularly interesting examples from our set of genes in strong 
inter- chromosome LD with ALS resistance mutations are those encoding GCN2 (general control non- 
repressible 2) and KIN10 (SNF1 kinase homolog 10). Both proteins have been previously identified 
as playing key regulatory roles in response to herbicides, with GCN2 directly involved in homeostatic 
tolerance to ALS and glyphosate herbicides through regulating autophagy and amino acid signaling 
(Faus et al., 2015; Zhao et al., 2018). Similarly, KIN10, a key positive regulator of autophagy in A. 
thaliana, is activated in response to photosystem II herbicides (Baena- González et al., 2007; Chen 
et al., 2017; Fujiki et al., 2001).

Discussion
The application of herbicides to manage agronomically important weeds has led to one of the best- 
studied examples of parallel evolution outside the laboratory, with target- site- resistance mutations 
to ALS- inhibiting herbicides identified in more than 150 species (Heap, 2014). We have studied the 
evolution of resistance mutations at two genes, ALS and PPO, from a genome- wide perspective 
across a large fraction of the range of one of the most problematic weeds in the US and Canada, A. 
tuberculatus. We found rampant evidence for both independent origins and gene flow, competition 
among resistant haplotypes, and the interaction of large- effect TSR mutations with physically unlinked 
alleles with resistance- related functions. These results paint a picture of the rise, spread, and fate of 
adaptive alleles in the face of extreme selection, with important implications for the management of 
herbicide- resistant agricultural weeds.

Repeated origins and the spread of resistance via gene flow
We detected strong evidence for parallel evolution to herbicides within A. tuberculatus agricultural 
weed populations at multiple levels. Target- site mutations conferring resistance to PPO and ALS 
herbicides in the sampled population were found at seven distinct codons, with nine distinct variants, 
three of which are common. These three common mutations have arisen repeatedly seven times 
across our sampled populations, based on ARG inference (Table 1, Figure 2), consistent with the 
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largely soft selective sweep signals we observe at a regional scale (Figure 1). ARGs have seen limited 
implementation outside of human populations for examining patterns of local adaptation but recently 
have been used to infer the evolutionary processes that govern islands of differentiation across birds 
(Hejase et al., 2020). In comparison to gene trees that illustrate the average coalescent history of 
these genomic regions (Figure 2—figure supplement 1), we show that accounting for intragenic 
recombination through ARG inference has been extremely valuable for further resolving independent 
origins of adaptive mutations.

From a mutation- limited view of adaptation, the extent of parallelism in target- site herbicide 
resistance that we observe here is particularly extreme. However, given the estimate of North Amer-
ican A. tuberculatus 4Neµ ~  Θπ  = 0.041 for putatively neutral sites (Kreiner et al., 2019), a new TSR 
mutation at any of the eight adaptive ALS mutations should arise at a rate of Θπ/2—once every 
six generations (i.e. 0.041/2 x 8 known TSR loci = 0.164 TSR mutations per generation; see also 
Charlesworth, 2009; Karasov et al., 2010). Furthermore, the estimated  Θπ  we use to infer the rate 
of new mutations may even be an underestimate given contemporary population size, which may be 
closer to census size than long- term estimates of Ne from neutral polymorphism, should determine 
the mutational supply for rapid adaptation under models of evolutionary rescue (Bell, 2013; Karasov 
et al., 2010; Kreiner et al., 2018; Neve et al., 2014). Indeed, if we modify this value to reflect the 
contemporary estimate of Ne over the last 50 years (~8 × 108) and assume an A. thaliana mutation 
rate of 7 × 10–9 (Ossowski et al., 2010; Weng et al., 2019), our  Θ  becomes >1 and a new mutation 
at any TSR codon should arise every generation—consistent with the remarkably parallel mutational 
origins we describe here. From these inferences, parallelism in simple target- site herbicide resistance 
adaptation in A. tuberculatus appears to be on par with prokaryotic adaptation and pesticide resis-
tance adaptation in Drosophila melanogaster, where population sizes on the order of  Θ  ~ 1 facilitate 
adaptation to occur rapidly, without being limited by mutational input at single sites (Karasov et al., 
2010).

In the context of such extreme recurrent evolution, we still find an important role of gene flow 
in the spread of herbicide resistance across the range. Not only do agricultural regions and popula-
tions within them harbour multiple origins of TSR, but distinct recombinational units harbouring these 
mutational origins also map to many populations (Figure 2B). The widespread impact of gene flow 
is further consistent with our inference of near panmixia for all but two resistant lineages, although 
our permutation test is limited in power for rare origins. In part, widespread movement of A. tubercu-
latus and TSR variants across the North American range is likely to reflect the massive recent expan-
sion we see here (Figure 3A)—population size increasing by four orders of magnitude over the last 
100 years. This expansion also corresponds well with A. tuberculatus’s contemporary agricultural asso-
ciation (Sauer, 1957), suggesting that agronomic regimes are likely to have in large part facilitated the 
success of this weed species. Thus, both extreme mutational parallelism and a complex network of 
haplotype sharing, via gene flow and colonization, characterize the distribution of herbicide resistance 
across our sampled agricultural populations.

While the role of repeated origins and widespread gene flow we characterized here fit well with 
the cosmopolitan and highly convergent nature of herbicide resistance adaptation, the patterns 
we observe may be influenced by the sensitivity of ARG inference to both phasing quality and 
fine- scale recombination rate variation. We performed a two- step phasing method, performing 
population- level phasing with SHAPEIT4, a powerful up- to- date method (Delaneau et al., 2019), 
after performing read- backed phasing with WhatsHap (Martin et al., 2016). Nonetheless, phase 
switching remains a challenge for haplotype inference in naturally occurring populations in lieu of 
long- read population resequencing. Phase- switching between haplotypes is likely to be interpreted 
as a recombination event during ARG inference, however, by explicitly modeling how these ‘recom-
binational’ units relate to one another, ARG inference should still be better able to resolve indepen-
dent origins of adaptive haplotypes than traditional reconstruction methods. Nonetheless, to adjust 
for the potential phase- switching that may artificially inflate recombination rates, we ran ARGweaver 
over three magnitudes of recombination rate values (r = 10–7 to 10–9), as well as two resolutions of 
discrete time steps (t = 20, 30) (Figure 2—figure supplement 2), to find the parameter values that 
maximized the likelihood of our phased data (r = 10–8 and t = 30). Even across less likely parameter 
values, we find consistent support for multiple origins across all TSR loci (Figure 2—figure supple-
ment 3).
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The selective history of target-site resistance lineages
Detrimental effects of monogenic resistance mutations as a result of pleiotropic tradeoffs and fluc-
tuating ecological selective pressures (Lenormand et al., 2018) have led to the question of whether 
such costs could be leveraged to prevent the persistence of resistance mutations (Vila- Aiub, 2019). 
We were able to evaluate evidence for TSR alleles that predated the onset of herbicide usage, and 
thus learn about how long these alleles persist, by rescaling allelic age estimates by the geometric 
mean effective population size estimate over the last 50 years (Figure 3). We found evidence for one 
mutational lineage vastly predating the onset of ALS herbicide use, arising nearly 350  years ago; 
however, this lineage only showed 45% support for a monophyletic origin across MCMC iterations 
of the ARG inference. By and large, our results suggest that the ALS resistance mutations we have 
sampled arose repeatedly, soon after the introduction of ALS- inhibiting herbicides in the 1980s. The 
haplotypes on which they arose have since been subject to widespread gene flow, which can facil-
itate a rapid response to selection across a large geographic range. In comparison to these non- 
synonymous substitutions within the ALS gene, the single- codon deletion that confers resistance to 
PPO- inhibiting herbicides appears to be much younger, estimated to have only arisen within the last 
3–4 years prior to population sampling.

While these allele age estimates provide a powerful test of the extent of adaptation from 
standing variation versus from new mutations, and the timescale over which resistance mutations 
may persist, these estimates are an approximation based on the geometric mean Ne over the last 
50 years, and do not fully account for the monumental population expansion this species shows. 
Furthermore, this rescaling depends on the accuracy of our Ne estimate through time, as inferred 
by Relate (Speidel et al., 2019). Previously, we have also implemented δaδi (Gutenkunst et al., 
2009), which uses the site frequency spectrum, to infer demographic history in these samples and 
similarly found evidence for large recent population expansion in a two epoch model (Kreiner 
et al., 2019). Relate is a better method for Ne inference in this scenario, however, as it provides 
estimates of Ne on contemporary timescales (0–100 years ago). Further, it has been shown to be 
accurate in the face of phasing error, with only a slight overestimation of Ne on recent timescales 
(Speidel et  al., 2019). Nonetheless, this slight bias towards larger Ne estimates in the face of 
phasing error may suggest that our rescaled allele ages tend to underestimate the true age of 
these mutations.

Given the challenges of allele age estimation, we also used a conceptually related approach, 
testing for evidence of selection over two different timescales with a tree- based statistic that is robust 
to population size misspecification. Reassuringly, this tree- based test clearly shows evidence of selec-
tion since a mutation arose (consistent with de novo adaptation) for the history of four out of seven 
lineages. However, this test further demonstrates that these lineages are even more likely to have 
been under selection on more recent timescales, with rank order shifts in support across resistant 
lineages as compared to support for consistent selection over their history. Thus, while by our esti-
mates, adaptation to PPO- and ALS- inhibiting herbicides relies predominantly on de novo mutation, 
spatially and temporally varying selection has resulted in muted signals of selection over the course of 
many mutational lineages’ histories—selection that has intensified over timescales even more recent 
than the onset of herbicide use in some geographic regions.

While the intensification of herbicide use over the last half- century may be one source of tempo-
rally varying selection, rotating herbicide and cropping regimes may also contribute to fine- scale fluc-
tuations in selection for or against particular TSR mutations. For example, in corn and soy production 
systems (where the focal crop alternates each season), PPOs were typically used only in soy, whereas 
ALS herbicides were heavily used in both crops (Salas et al., 2016; Tranel and Wright, 2002). Thus, 
the lower net- positive selection from PPO- inhibiting herbicides along with their recent resurgence 
in popularity (Tranel, 2021) may explain the more recent origins and thus shorter persistence of 
the PPO ∆Gly210 alleles. Similarly, while the ALS Trp- 574- Leu mutation tends to confer resistance 
broadly across all ALS herbicides, the ALS Ser- 653- Asn mutation confers resistance to fewer types 
of ALS- inhibiting herbicides, which also happen to be used more commonly in soy (Patzoldt and 
Tranel, 2017). This may contribute to the relatively lower frequency of ALS Ser- 653- Asn compared to 
ALS Trp- 574- Leu across the A. tuberculatus range, or even suggest that a lack of both focal crop and 
herbicide rotation facilitated strong recent selection on the high- frequency Ontario ALS Ser- 653- Asn 
lineage.

https://doi.org/10.7554/eLife.70242
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Intra and inter-locus allelic interactions shape the history of TSR 
mutations
The outcome of parallel adaptation in a continuous species range has been thoroughly described by 
Ralph and Coop, 2010. When the geographic spread of an adaptive mutation is migration limited, 
partial sweeps for parallel adaptive mutational origins that occur in distinct geographic regions will 
be common. However, as ‘waves of advance’ of these distinct mutational origins expand, eventually 
coming into contact, beneficial haplotypes will compete on their way to fixation (Ralph and Coop, 
2010). Given our evidence for highly parallel TSR adaptation across the range, we expect that this 
scenario fits the evolution of resistance particularly well. The widespread gene flow we observe sets 
up a scenario where independent origins of TSR mutations have now met and must interact. Under 
such a scenario, further background- dependent fitness effects, additive and epistatic interactions with 
both physically linked and unlinked loci, may shape the success of particular mutational lineages.

The coexistence of mutations of independent origin under strong selection in a given locale, 
notably of the ALS Trp- 574- Leu and ALS Ser- 653- Asn mutations in Essex, has allowed us to observe 
the signature of such intra- locus interactions. The 10 Mb stretch of repulsion and strong haplotypic 
divergence we observe (Figure 4A and B) likely reflects the unique spatial origins of each focal ALS 
TSR mutation and local selection. However, these mutations now co- occur across many agricultural 
regions. The ongoing repulsion of these alleles, combined with selection being constrained to act 
on independent allelic combinations (Otto, 2021), means that further adaptation to ALS- inhibiting 
herbicides must occur through the competition (sensu Mather, 1969) of these extended resistance 
haplotypes nearly 10 Mb long.

One question that arises based on our observations of haplotypic competition is why recom-
bination has not eroded the signal of LD, and further, why we do not observe a single haplotype 
with both ALS mutations? The former is clearly not because of a lack of opportunity for recombi-
nation, since trans- heterozygous individuals that carry both mutations in opposite phases are not 
uncommon, and both mutations segregate at considerable frequencies. However, it is possible that 
recombinant double mutants are only rarely generated through recombination. The local LD- based 
population recombination rate estimate of ρ = 4 Ner = 0.0575 in a region of 100 kb on either side 
of ALS implies 3.4 new recombination events per generation in the distance between these two 
mutants (237 bp x (0.057/4)). Accounting for the local frequencies of ALS Trp- 574- Leu and ALS Ser- 
653- Asn alleles (0.29 × 0.44), in a panmictic population, ~ 1 of these recombination events should 
generate a double resistant mutant every other generation. However, recombination is preferred in 
promoter regions (Kent et al., 2017; Sandler et al., 2020), suggesting that these calculations may 
overestimate intragenic levels of recombination and thus the opportunity to generate recombinant 
resistant haplotypes.

Understanding the fitness consequences of these alleles, both separately and in combination, will 
determine how this competition will be resolved. If one allele confers significantly greater resistance 
(and assuming similar costs in the absence of herbicides), we may expect it to eventually reach fixa-
tion, outcompeting the alternate haplotype. Alternatively, if the alleles are selectively neutral with 
regard to each other, stochastic processes may predominate (Ralph and Coop, 2010). Given enough 
time, however, recombination should create haplotypes carrying both TSR mutations. It is possible 
that the joint effect of non- synonymous mutations at codon 574 and 653 on ALS protein structure 
results in negative epistasis, which would keep such double resistant haplotypes rare (as observed 
for antibiotic resistance alleles, Porse et al., 2020). Alternatively, additive or positive epistatic effects 
between these mutations would favour fixation of a double mutant haplotype, suggesting that the 
current observed haplotypic competition is in fact a form of Hill- Robertson interference (where the 
rate of adaptation is slowed due to linkage) which can eventually be resolved through recombination 
(Cooper, 2007; Hill and Robertson, 1966; Otto, 2021).

While we find that intra- chromosomal interactions such as competition between alleles have influ-
enced the selective trajectory of individual TSR alleles, we were also interested in the extent to which 
interactions with physically unlinked loci may have facilitated herbicide resistance evolution. We find 
evidence that selection on Essex haplotypes containing ALS TSR mutations has likely been affected by 
such second- site modifiers (Figure 4C–E). We find particularly extreme signed LD between TSR muta-
tions and alleles on different chromosomes. LD between resistance alleles on different chromosomes 
has been interpreted as epistasis (Gupta et al., 2021), but LD between alleles that are not physically 
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linked may also result from the effects of additive alleles with correlated responses to selection (e.g. 
the stacking of resistance alleles; Busi et al., 2013).

Alleles in windows on different chromosomes with the strongest evidence of linkage with ALS target- 
site resistance mutations function in biological processes related to known organismal responses to 
ALS herbicides. ALS- inhibiting herbicides disrupt biosynthesis of branched amino acids, and a rapid 
response after exposure leads to amino- acid remobilization through enhanced protein degradation 
(autophagy) and reduced synthesis (Orcaray et al., 2011; Trenkamp et al., 2009; Zhao et al., 2018; 
Zulet et al., 2013). We observe significant enrichment for functions in both amino acid production 
and cell death. These alleles may thus provide additional levels of tolerance on the large- effect TSR 
background, by compensating for homeostatic disturbances caused by ALS exposure or the potential 
costs of large- effect resistance mutations (as seen for antibiotic resistance, MacLean et al., 2010).

Conclusion
In conclusion, adaptation to herbicides and the emergence of well- characterized target- site resis-
tance mutations provide a powerful system for characterizing rapid and repeated evolution in plant 
populations, as well as the consequences of extreme selection on local and genome- wide patterns of 
diversity. Studies of herbicide resistance evolution have highlighted how extreme selection can modify 
life- history and plant mating systems (Kuester et al., 2017; Van Etten et al., 2020) and vice versa 
(Kreiner et al., 2018), as well as the role of small- versus large- effect mutations (or monogenic versus 
polygenic adaptation) (Kreiner et al., 2021; reviewed in Délye, 2013; Powles and Yu, 2010), costs of 
adaptation under fluctuating environments (Vila- Aiub, 2019; Vila- Aiub et al., 2009), and mutational 
repeatability (e.g. Heap, 2014; Menchari et al., 2006) (see Baucom, 2019). The work here contrib-
utes to this literature by characterizing not only the parallel origins and spatial distribution of target- 
site- resistance alleles across a broad collection of agricultural populations, but also heterogeneity in 
their evolutionary history and key contributing processes, such as fluctuating selection, haplotype 
competition, and cross chromosomal linkage with putative resistance alleles.

From a practical perspective, this work highlights A. tuberculatus as a worst- case scenario for 
controlling the evolution of herbicide resistance and containing its spread. Large census and effective 
population sizes facilitate extreme convergence for repeated selection of identical nucleotide poly-
morphisms conferring resistance. One key priority for thwarting new resistance mutations from arising 
and spreading should thus be containing A. tuberculatus population sizes as much as possible. Our 
findings suggest that most resistance mutations are of very recent origin and that they can persist for 
several decades with average herbicide usage. Across growing seasons, our best hope is to reduce 
the fitness advantage of resistant types by decreasing reliance on herbicides, rotating herbicide chem-
ical compounds and mode- of- actions, and using herbicide mixtures. However, one must also be wary 
of neighboring weed populations. Gene flow of resistance mutations across the range is widespread, 
facilitating a rapid response to selection from herbicides, potentially even in naive populations. In 
particular, we find strong regional patterns in the distribution of resistant lineages, suggesting coordi-
nated herbicide management regimes across farms, land- use planning, and hygienic machine- sharing 
will be important tools for efficient control of herbicide- resistant weeds.

Materials and methods
Amaranthus tuberculatus sequence data
Sequencing and resequencing data were from a published study (Kreiner et  al., 2019). Whole- 
genome Illumina sequencing data are available at European Nucleotide Archive (ENA), while the 
reference genome and its annotation are available on CoGe (reference ID = 54057). The analyses in 
this paper focus on herbicide resistance in 158 agricultural samples, collected from eight fields with 
high A. tuberculatus densities across Missouri and Illinois in the Midwestern US (collected 2010), and 
from newly infested counties in Ontario, Canada, Walpole Island, and Essex County (collected 2016). 
The eight Midwestern US populations previously had been surveyed for resistance to glyphosate 
(Chatham et al., 2017). Ten additional samples collected from natural populations in Ontario, Canada 
are also included, but only for tree- based inference. These samples have been recently analyzed 
with respect to the convergent evolutionary origins of amplification of the glyphosate- targeted gene, 
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5- enolpyruvylshikimate- 3- phosphate (Kreiner et al., 2019), as well as the polygenic architecture of 
glyphosate resistance (Kreiner et al., 2020).

SNP calling and phasing genotypes
Filtered VCFs were obtained from Kreiner et al., 2019 for all analyses. Briefly, freebayes- called SNPs 
were filtered based on missing data ( > 80% present), repeat content, allelic bias ( > 0.25 and < 0.75), 
read paired status, and mapping quality (> Q30). Six individuals were removed due to excess missing 
data, leaving 152 for agricultural and 10 natural samples for further analyses.

Known TSR mutations were assayed for presence/absence in our set of 162 A. tuberculatus individ-
uals. At the time, that meant checking for known TSR mutations at eight ALS codons (Yu and Powles, 
2014), three PPO codons (Giacomini et al., 2017; Rousonelos et al., 2017; Varanasi et al., 2017), 
one PsbA (conferring resistance to photosystem II inhibitors) codon (Lu et al., 2019), and three EPSPS 
codons (Perotti et al., 2019). To assay these mutations in our samples, we referred to the literature on 
previously verified TSR mutations, extracting the sequence surrounding a given focal TSR mutation, 
and BLAST (Altschul et al., 1990) searched our reference genome to locate its position.

To phase genotypes into haplotypes, we first used WhatsHap (Martin et al., 2016), which performs 
readback phasing, and passed these phase sets to SHAPEIT4 (Delaneau et al., 2013) which further 
phases haplotypes based on population- level information. Since phasing is very sensitive to data 
quality, we also applied a more stringent threshold of no more than 10% missing data for each SNP. 
SHAPEIT4 also requires a genetic map; with no recombination map for A. tuberculatus yet available, 
we used LDhat to infer recombination rates across the genome in our samples (as in Kreiner et al., 
2019). Specifically, we used the interval function to estimate variable recombination rates within each 
of the 16 chromosomes of the pseudoassembly, using a precomputed lookup table for a θ of 0.01 for 
192 chromosomes. We then converted rho estimates to genetic distance- based recombination rates 
(100/4Ner; Ne = 500,000), and used a monotonic spline to extrapolate genetic distance to each SNP 
in our VCF. We provided SHAPEIT4 an effective population size estimate of 500,000, inferred from 
previous demographic modeling in dadi (Kreiner et al., 2019).

Tree inference
Gene trees were inferred based on haplotypes within focal target- site genes (ALS and PPO), and 
5 kb on either side around them. This resulted in 296 SNPs and 622 SNPs for inference of ALS and 
PPO trees respectively. Using the phased data around these genes, we first converted each phased 
haplotype to FASTA format, performed realignment with clustal omega (Madeira et al., 2019), and 
then ran clustal- w2 (Rédei, 2008) to infer the maximum likelihood tree, once for each gene, with 1,000 
bootstraps. We then plotted mutational status for each focal TSR mutation (ALS Trp- 574- Leu, ALS Ser- 
653- Asn, and PPO ∆Gly210) at each tip of both gene trees using ggtree (Yu, 2020).

We ran ARGweaver (Hubisz and Siepel, 2020; Rasmussen et al., 2014) on a region of 20,000 
SNPs centered between the ALS and PPO genes on Scaffold 11 across our phased haplotypes. We 
used the settings - N (effective population size) 500,000 - m (mutation rate) 1.8e-8 --ntimes (esti-
mated timepoints) 30 --maxtime (max coalescent time) 100e3 - c (bp compression rate) 1 - n (MCMC 
samples) 1,250. We used an effective population size of 500,000, based on the best fitting demo-
graphic model previously inferred from this dataset with δaδi (Gutenkunst et  al., 2010; Kreiner 
et al., 2019). To account for any bias introduced by phasing error in the form of inflated recombination 
rates, we ran multiple iterations of ARGweaver at varying constant recombination rates, from r = 7e–7 
to 7e–9, drawing our inferences from the parameter values that maximized the likelihood of observing 
our data (r = 7e–8). Similarly, we also tested out two parameter values of --ntimes (20, 30), and used 
t = 30 for our inference, together with r = 7e–8. We then extracted the most likely ARG sample from 
the MCMC chain (sample 1240), and the local trees corresponding to each of our three focal TSR 
mutations using arg- summarise. The arg- summarize function of ARGweaver was used to estimate the 
mean and 95% confidence intervals of the age of each mutational origin (based on clusters inferred 
from the most likely trees in the previous step) across all MCMC samples of the ARG. Since by default, 
arg- summarise --allele- age will infer the age of only the oldest allele under a scenario of multiple 
origins, we subsetted the dataset one mutational origin at a time (including all susceptible haplotypes) 
to obtain age estimates for each origin. ARGweaver runs on phased bi- allelic SNP data. Therefore 
to obtain a tree for the PPO ∆Gly210 deletion, we recoded the VCF entry at this indel as an SNP, 
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changing the reference allele at this site to a single bp record matching the reference call at the start 
position (G) with an alternate single base- pair call (A).

As a test for panmixia, we performed a permutation test of the proportion of a mutational lineage 
(i.e. haplotypes belonging to a particular origin) mapping to Ontario (Essex and Walpole) compared 
to the Midwest. To do so, we randomized haplotype assignment to either Ontario or the Midwest, and 
recalculated the proportion of haplotypes belonging to each origin found in each region, 1000x. We 
then calculated the 95% CI of the proportion of haplotypes mapping to either Essex or the Midwest, 
as the null expectation under panmixia. When our observed value for a given origin exceeded the null 
expectation, we took this as significant evidence for stratification in the geographic distribution of a 
mutational lineage.

Coalescent tree-based tests for selection
RELATE (Speidel et al., 2021; Speidel et al., 2019), a scalable method for estimating ARGs across 
large genomic datasets implements a tree- based test for detecting positive selection (Griffiths and 
Tavaré, 1998; Speidel et al., 2019). Under the standard coalescent model (i.e. assuming selective 
neutrality of mutations), the number of descendants in a particular lineage is exchangeable. Thus, 
one can compute the probability of some observed skew in the number of descendants using the 
hypergeometric distribution (Griffiths and Tavaré, 1998; Speidel et al., 2019). This approach gives 
us a p- value for this skew under the null (i.e. no selection). We did this on an origin- by- origin basis, 
comparing the rate of allele frequency change across the tree for a focal resistant lineage compared 
to all other susceptible haplotypes across the tree. Since this statistic is simply based on the order of 
coalescents, rather than branch lengths, it should be robust to misspecified effective population sizes 
used to infer our ARG (Speidel et al., 2019). Since RELATE assumes an infinite sites model and thus 
is unsuitable for testing hypotheses about multiple origins, we performed our own implementation of 
this method for trees outputted from Argweaver (Rasmussen et al., 2014).

Briefly, the statistic works as follows. Let fN be the number of carriers of our focal mutation in the 
current day, N be the total present- day sample size, and kS be the number of susceptible lineages 
present when the mutation increases in count from 1 to 2. We sum each individual probability that a 
mutation spreads to at least a given frequency, from fN to N- ks + 2.
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The null hypothesis, that allele frequency change occurred under drift, is rejected when this one- 
side p- value is sufficiently small (i.e. α < 0.05), implying selection has governed the spread of this 
mutation since it first arose.

We also modified this statistic to test for selection on more recent timescales, and thus the scenario 
of adaptation from standing genetic variation. Here, we need to define kR, the number of resistant 
lineages at some time (t) before the present day, in addition to kS(t).
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The null hypothesis that the frequency change (between the current day and some time in the past 
more recent than when the mutation first arose (t) happened under random drift (and hence no selec-
tive pressures)) is rejected if this p- value is sufficiently small.

Ne estimation through time
We used RELATE 1.1.6 to estimate tree sequence from distinct recombinational units across the 
genome from our phased dataset. Relate requires polarized ancestral allele calls, such that alternate 
alleles represent the derived state. To do so, we performed a multiple alignment of our A. tubercu-
latus genome to A. palmeri (Montgomery et al., 2020) using lastz (Harris, 2007), retained the best 
orthologous chain from the alignment, and extracted variant sites. We modified the A. tuberculatus 
reference genome with the derived allele states from our multiple alignment, using this modified 
reference to polarize allele calls. On each chromosome, we then ran  RelateParallel. sh --mode All, 
using the output from all chromosomes to first estimate mutation rate (RelateMutationRate --mode 
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Avg), reestimate branch lengths with this updated mutation rate (ReEstimateBranchLengths), and 
then lastly estimate population size through time ( Esti mate Popu lati onSize. sh). Population sizes were 
estimated from 0 years ago to 10,000,000 years ago, in epochs timesteps of 100.25 years, to obtain 
particularly fine- scale estimates in the recent past.

Selection scans and LD-based analyses
The phased data used as input for ARGweaver was also used to extract selective sweep summary 
statistics in selscan (Szpiech and Hernandez, 2014). In selscan, we estimated both XPEHH (Sabeti 
et al., 2007), in this case, the difference in the integrated extended haplotype homozygosity between 
resistant and susceptible haplotypes, and mean pairwise difference estimates. For both of these statis-
tics, we provided LD- based recombination maps, inferred from LDhat. Because some individuals in 
Essex always carried at least one resistant ALS haplotype through either mutations at ALS Trp- 574- Leu 
or ALS Ser- 653- Asn, to compare patterns of selection associated with resistance and susceptibility, 
these statistics were calculated at the haplotype, rather than individual level. For each independent 
origin as inferred from ARGweaver, we similarly inferred XPEHH, as well as H12 (Garud and Petrov, 
2016; Garud and Rosenberg, 2015) across the chromosome containing ALS.

We used plink (v1.90b3.46) (Purcell et al., 2007) to calculate both signed LD (r) between each focal 
TSR mutation and missense mutations on the same chromosome, and with all other bi- allelic missense 
SNPs across the genome. We used nonsynonymous SNPs as we expected them to be less influenced 
by population structure and admixture (Good, 2020) compared to synonymous SNPs, but present 
the correlation between genome- wide LD with synonymous and nonsynonymous SNPs in Figure 4—
figure supplement 4. We performed these calculations with respect to a given TSR mutation by 
using the --ld- snp options to specify a focal mutation. To visualize patterns of signed LD between 
TSR mutations and other missense SNPs, we split the genome into non- overlapping 10 kb windows 
and calculated the average LD among all SNPs in each window. All LD calculations were polarized 
by rarity (e.g. minor alleles segregating on the same haplotypes were regarded as being in positive 
LD). In Essex, despite being considerably common, both ALS 574 and ALS 653 had a frequency less 
than 50%, so LD values with all missense alleles for each of these focal TSR mutations are directly 
comparable. As another visualization of the haplotype structure in this region, we conducted two 
genotype- based PCAs using the R package SNPrelate (Zheng et al., 2012), for genotypes spanning 
2 Mb around ALS, 10 Mb around ALS, and on genome- wide genotypes.

To test whether the negative LD we observed between ALS Trp- 574- Leu and ALS Ser- 653- Asn was 
particularly extreme in Essex, we compared this value to pairs of either nonsynonymous or synony-
mous SNPs of similar frequency (minor allele frequency >0.20) and physical distance apart (< 500 bp). 
To test whether the top 2% of 1 Mb windows of nonsynonymous SNPs with particularly low or high 
signed LD with ALS TSR mutations (either ALS Ser- 653- Asn or ALS Trp- 574- Leu) was significantly 
different from the null expectation, we used a permutation approach whereby we randomly shuffled 
the assignment of the focal ALS TSR mutation between all individuals and calculated mean LD (with 
respect to the permuted TSR mutations) in the window of interest. We repeated this permutation 
1000 times to generate a null distribution for comparison to the real average signed LD value of each 
region. This permutation test explicitly evaluates whether a TSR mutation and missense mutations in a 
focal window are more likely to be found together in the specific set of individuals containing the focal 
TSR mutation than any other set of individuals of the same size. Thus, this test is robust to variance in 
data quality across windows. The proportion of permuted observations with a mean absolute signed 
LD exceeding the observed signed LD was taken as the two- tailed p- value for cross- chromosome 
LD. Lastly, we found the intersect of these windows with the closest gene according to our genome 
annotation, and found their A. thaliana orthologs (Emms and Kelly, 2015). We used the set of A. 
thaliana orthologs found across all 13 significantly enriched 1 Mb windows in a Gene Ontology (GO) 
Enrichment analysis for biological processes.
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The relative role of hybridization, de novo evolution, and standing variation in weed adaptation to agricultural environments is

largely unknown. In Amaranthus tuberculatus, a widespread North American agricultural weed, adaptation is likely in!uenced

by recent secondary contact and admixture of two previously isolated lineages. We characterized the extent of adaptation and

phenotypic differentiation accompanying the spread of A. tuberculatus into agricultural environments and the contribution of an-

cestral divergence. We generated phenotypic and whole-genome sequence data from amanipulative common garden experiment,

using paired samples from natural and agricultural populations. We found strong latitudinal, longitudinal, and sex differentiation

in phenotypes, and subtle differences among agricultural and natural environments that were further resolved with ancestry infer-

ence. The transition into agricultural environments has favored southwestern var. rudis ancestry that leads to higher biomass and

treatment-speci"c phenotypes: increased biomass and earlier !owering under reduced water availability, and reduced plasticity in

"tness-related traits.We also detected de novo adaptation in individuals from agricultural habitats independent of ancestry effects,

including marginally higher biomass, later !owering, and treatment-dependent divergence in time to germination. Therefore, the

invasion of A. tuberculatus into agricultural environments has drawn on adaptive variation across multiple timescales—through

both preadaptation via the preferential sorting of var. rudis ancestry and de novo local adaptation.

KEY WORDS: De novo adaptation, gene !ow, phenotypic plasticity, preadaptation, weed evolution.

Although selection from herbicides is one of the most dramatic
and novel selection pressures that new agricultural weed pop-
ulations experience, a much broader suite of ecological shifts
and adaptive changes is likely to accompany the transition into
agronomic environments (Murphy and Lemerle 2006) and result-
ing range expansion (Clements and Ditommaso 2011). Weeds
that have successfully invaded contemporary landscapes, includ-
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ing crop fields and range lands, are subject to predictable and
repeated disturbances, regimented irrigation, extreme interspe-
cific competition, and intensified chemical inputs—all of which
should lead to novel selection pressures to accelerate life history
and assure reproduction in variable environments (Baker 1974;
De Wet and Harlan 1975; Vigueira et al. 2013). Baker (1974) hy-
pothesized that in addition to specialized traits, an “ideal weed”
might possess a phenotypically plastic generalist genotype to
better respond to agricultural disturbance regimes. Because of
the impact of weed populations on crop productivity and native
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diversity, agricultural weeds present a particularly pressing case
study of convergent adaptation across species, yet remain rel-
atively neglected in the field of evolutionary genetics (Stewart
et al. 2009; Ravet et al. 2018; Martin et al. 2019). Indeed, de-
spite long standing hypotheses of the direction of weed evolu-
tion (De Wet and Harlan 1975) and caricatures of ideal weeds
(Baker 1974), the phenotypic changes that result from the tran-
sition from natural to agricultural environments, as well as the
origins and relevant timescale of genetic variation that underlies
these changes, remain unresolved in most systems (but see Bar-
rett 1983; Boudry et al. 1993; Arnaud et al. 2010; Muller et al.
2011; Kuester et al. 2014; Charbonneau et al. 2018; Ye et al.
2019).

Identifying the genetic source of weed adaptation—whether
arising de novo, drawing from standing variation, or through gene
flow—has important implications for understanding the tempo of
evolution and inevitability of weed persistence in agricultural set-
tings. The role of gene flow in weed adaptation to agriculture has
been well-recognized, especially via hybridization of wild and
domesticated relatives (De Wet and Harlan 1975). Hybrid ori-
gins of invasive weed populations have been well-documented in
the genus Helianthus (Kane and Rieseberg 2008; Muller et al.
2011; Lai et al. 2012), with multiple wild to weedy transitions
occurring via crop hybridization. In wild and cultivated beets
(Beta vulgaris), hybridization has led to invasive weed popula-
tions with a mix of agriculturally fit traits of both types, including
self-fertilization (from the domesticated type), early bolting, and
annual flowering (wild type traits) (Arnaud et al. 2010). Thus,
although hybridization of weeds with domesticates may act as a
direct line to adaptive genetic variation, gene flow between lo-
cally adapted types within a species (“ecotypes,” sensu Tures-
son 1922), common in many weeds (Brown and Marshall 1981;
Barrett 1982), may further facilitate a rapid response to selec-
tion (Fisher 1930; Baker 1974). The role of within-species stand-
ing variation (related to “preadaptation,” sensu Liebman et al.
2001, referring to prior adaptation leading to high fitness in a
novel environment) versus de novo evolution is largely untested
in agricultural weeds, although it has been investigated more ex-
tensively in invasive alien plant species (e.g., Guo et al., 2014;
Schlaepfer et al., 2010).

Amaranthus tuberculatus is a diploid annual native to
North America (Costea et al. 2005), the genetics of which is
highly diverse and geographically structured (Waselkov and
Olsen 2014; Kreiner et al. 2019). It is extremely successful in
agricultural systems, hypothesized to result in part from a com-
bination of its obligately outcrossing dioecious wind-pollinated
mating system (Costea et al. 2005) and extremely high seed
production (with females producing on average between 35,000
and 1,200,000 notably small [1 mm] seeds [Stevens 1932;
Sellers et al. 2003; Hartzler et al. 2004]). Recent inference in

the species highlights a massive recent expansion in effective
population size over the last century—a key consequence of
which is highly parallel target-site resistance evolution (Kreiner
et al. 2021). In A. tuberculatus, two major lineages and ecotypes
exist, the classification of which has been debated and revised
from two species (Riddell 1835; Sauer 1955) to one (Uline
and Bray. 1895; Pratt and Clark 2001), to most recently, two
distinct varieties on the basis of continuous, clinal morphological
variation across their sympatric ranges (Costea and Tardif 2003;
Costea et al. 2005). We will refer to these lineages as varieties
throughout.

The two A. tuberculatus varieties differ in their historical
ranges as inferred from herbarium specimens, with var. tuber-
culatus being found along northeastern Missouri and Missis-
sippi water basins, but var. rudis (initially circumscribed as A.
tamariscinus) historically restricted to ruderal habitats in four
southwestern states in the United States (Sauer 1957). The sec-
ondary contact of these varieties over the last two centuries was
thought to be driven predominantly by the expansion of var.
rudis northeastwards. Sauer (1957) hypothesized that the admix-
ture resulting from this secondary contact led to the agricultur-
ally competitive form. However, he also posited that the hygro-
phytic nature of species in the genus, and their conditioning to
frequently disturbed riparian habitats, preadapted them to the
human-mediated disturbances widespread in agricultural land-
scapes. Recent genetic and genomic evidence of a longitudinal
cline in ancestry between their ancestral ranges supports the sec-
ondary contact of A. tuberculatus varieties, but the tendency to
see var. rudis ancestry in agricultural environments (Waselkov
and Olsen 2014; Kreiner et al. 2019) suggests that var. rudis, in
particular, may be preadapted.

Although differences in ecological pressures across natu-
ral and agricultural habitats may shape patterns of phenotypic
and genomic diversity, this fine-scale evolution is likely to be
mediated by geographic gradients in abiotic factors that de-
termine seasonality across broader scales. Adaptive geographic
clines in plant traits, latitudinal clines in particular, are ubiqui-
tous and have been widely described across systems for repro-
ductive, defense, and growth-related phenotypes (Neuffer 1990;
Stinchcombe et al. 2004; Samis et al. 2012; Peterson et al. 2016;
Cornille et al. 2018; Bilinski et al. 2018; Frachon et al. 2018;
Exposito-Alonso 2020). In short day plants (i.e., those where
flowering is induced by the shortening of days at the end of
the growing season), individuals at higher latitudes should be se-
lected to flower earlier to set seed before frost-induced mortality
(Holm 2010). Longitudinal clines are less common but have been
described for flowering time in Arabidopsis where it is thought
to be associated with geographic variation in winter temperature
and precipitation (Samis et al. 2008, 2012). Given the latitudinal
and longitudinal variation in A. tuberculatus ancestry, adaptation
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Figure 1. Pairwise collections of natural and agricultural populations spanning the historical sympatric (dark shaded area) and allopatric
ranges of A. tuberculatus var. tuberculatus (northeast) and A. tuberculatus var. rudis (southwest; range limits adapted from Sauer [1957]).
For context, we also depict populations along with their regional label from Kreiner et al. (2019) in black.

to these climate gradients may be in part confounded with histor-
ical patterns of ancestral divergence.

Here, we test key hypotheses about the role of admixture,
de novo, and ancestral variation in facilitating the recent invasion
of A. tuberculatus into agricultural environments. A recent study
performed a replicated common garden experiment using a broad
collection of A. tuberculatus to test hypotheses about agricul-
tural adaptation, but was largely unable to uncouple geographic
and fine-scale environmental drivers of phenotypic differentia-
tion (Waselkov et al. 2020). To ensure sufficient power to dis-
entangle broad geographic and environmental drivers of adapta-
tion, we used a paired collection design (Lotterhos and Whitlock
2015), sampling A. tuberculatus in pairs of natural and agricul-
tural sites that were <25 km apart, in a replicated fashion across 3
degrees of latitude and 12 degrees of longitude. We then tested for
local adaptation to agricultural environments in a common garden
experiment with treatments simulating components of natural and
agricultural environments. We performed a water-supplemented
treatment to simulate a key component of the riparian habitats in
which natural populations were collected, and a soybean (Glycine
max) competition treatment that was the predominant focal crop
where agricultural A. tuberculatus was collected. Lastly, we im-
plemented a control treatment that lacked both competition and
water supplementation. Across collections from 17 sets of paired
natural and agricultural populations (34 populations in total), we
grew 10 replicates of full siblings from 200 maternal lines across

each of the three treatments, totaling to 6000 individuals. Key to
testing hypotheses about the timescale of adaptation, we also col-
lected whole genome sequence data from 187 maternal lines to
explicitly examine the extent to which ancestry drives phenotypic
differentiation across natural and agricultural environments and
geographic clines. By combining a paired sampling approach, a
highly replicated phenotypic catalogue, and genomic data, our
results provide robust insight into the impact of human-mediated
disturbances on trait differentiation and the timescale underlying
adaptation to contemporary agricultural environments.

Methods
COLLECTIONS AND PARENTAL CROSSES

We made collections of 17 paired populations (a natural and agri-
cultural population collected <25 km apart, 34 populations in
total) in October 2018, from Ohio to Kansas, aiming for 20 ma-
ternal lines per population and ranging from eight to 30 ma-
ternal lines sampled (Fig. 1). Seed was partitioned into mesh
jewelry bags and buried in moist sand for 6 weeks before be-
ing grown out, as per stratification recommendations for the
species (Leon et al. 2007). Four replicates of 700 maternal lines
across these populations were sown and grown in growth cham-
bers, under short day conditions to shorten generation time, and
germinated under a 12-degree temperature amplitude to maxi-
mize germination (Leon et al. 2004) (16 h at 32 degrees, 8 h at
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20 degrees). Upon formation of reproductive organs, females
and males were immediately bagged to prevent cross-pollination
(inspired by McGoey et al. 2017) until enough individuals had
flowered that controlled, within-population crosses could be con-
ducted. We conducted 345 within-population crosses, where we
randomly assigned males to be transplanted into a pot of a fe-
male from a different maternal line within the same population,
such that we maximized the number of crosses within popula-
tions while only performing one cross per maternal line. Upon
transplanting the male into the female pot, we bagged the entire
aboveground portion of the pot and agitated the bags to facili-
tate male pollen dehiscence. Seeds successfully set in 326/345
crosses, and were harvested for cold treatment prior to the com-
mon garden experiment.

ROOFTOP COMMON GARDEN EXPERIMENT

We subsampled 200 of the 326 F1 lines from within-population
crosses, with the aim of matching sample size across natural and
agricultural environments within each population pair. We cold-
treated these lines in a 4◦C growth chamber in the dark for 8
weeks, in 8-cm wide petri dishes with 7.5 ml of deionized wa-
ter. We sowed seeds in 1-L treepots (Stuewe and Sons., Inc) in
the greenhouse (3 July 2019), and initially grew them under fluc-
tuating temperatures of 14°C at night (8 h) and 32°C in the day
(14 h) to maximize germination. Soybean seed (Glycine max var.
dekalb—DKB, 12–57) was sown in competition pots the next
day, with Amaranthus and soy equally spaced within the pot.
Treepots assigned to the water treatment had their bottoms duct
taped off to increase water retention. Plants were watered and
checked for germination daily for 10 days, and then moved out-
side on to the roof (12 July 2019) into a fully randomized, com-
plete block design, with every block (10) serving as a replicate of
each maternal line (200) in every treatment (3), totaling to 6000
individuals. We thought it important to rear plants outdoors to ex-
pose them to natural temperature, rainfall, light, and various other
environmental signals that may affect phenotypes. We should
clarify that in contrast to classic reciprocal common garden ex-
periment, reference to “Environment” as a predictor throughout
this study refers to the source of collected genotypes (Natural
habitats or Agricultural fields) and is distinct from the reared en-
vironment that we call “Treatment” (i.e., whether genotypes were
grown in the Water, Control, or Soy treatment).

PHENOTYPING AND DATA COLLECTION

Two weeks after germination and 1 week after plants were moved
onto the roof, we commenced phenotypic measurements start-
ing with cotyledon width (mm), hypocotyl length (mm), and leaf
number. With 6000 plants, this took about 10 days to complete,
and so we also recorded date of measurement as a covariate to be
used in related analyses. Once the first individual was found in

flower, we checked all plants for the start of flowering Monday,
Wednesday, and Friday for 4 weeks. Upon flowering, we also
measured stem width, plant height, number of nodes, whether an
individual was recorded late (extended inflorescence), or whether
the plant had been damaged (these individuals were subsequently
excluded from the statistical analyses). Due to a long tail of flow-
ering, after 4 weeks we halved census efforts, alternately check-
ing half of the blocks each Monday, Wednesday, and Friday.
Above ground biomass for all undamaged plants was harvested
into paper bags, starting 8 weeks after the start of flower and last-
ing until 11 weeks after flowering until all plants had been har-
vested. Upon harvest, we recorded date, sex, flower color, and
stem color. Plants were then dried in a 50◦C oven for 3 days
and weighed for above ground biomass. In total, we measured 11
phenotypes of interest: days until germination, cotyledon width,
hypocotyl height, early leaf number, time to flowering, height at
flowering, node number at flowering, stem width at flowering,
flower color (visual rating on a scale of 1 [light green] to 4 [dark
purple]), stem color (visual rating on a scale of 1 [light green] to 4
[dark purple]), and dry biomass. We also tracked sex, greenhouse
number, greenhouse block, roof block, days to first measurement,
and days to harvest. For visualization, occasionally phenotypic
rates are shown, which are calculated by dividing the focal trait
by the number of days between measurement and germination.

DNA COLLECTIONS AND SEQUENCING

We sampled two to three of the youngest leaves on each individ-
ual in two blocks of our common garden experiment just before
harvest. Because each block contains replicates of the same fam-
ily lines, we chose to sample these two blocks to have backup
tissue for each family in each treatment (backups that were later
destroyed by a −80◦C freezer failure during COVID-19). Leaves
were immediately put in tubes and submerged in liquid nitrogen
before being stored at −80◦C until extraction. We extracted DNA
from the 200 unique maternal lines that were grown in the com-
mon garden experiment. Total DNA was extracted using Qiagen
DNeasy Plant Mini kit according to manufacturer’s instructions.
We sent DNA samples to Genome Quebec Innovation Centre
(McGill University), Montréal, QC, Canada for library prepara-
tion and sequencing; 187 ended up being sequenced due to ex-
traction and library quality. Libraries were prepared using the
NEB Ultra II Shotgun gDNAlibrary preparation method and se-
quenced on four lanes of Illumina NovaSeq S4 PE150 (2 × 150)
sequencing platform using 96 barcodes. A total of ∼25 billion
reads (25,818,840,892) were generated, with an average of ∼137
million (137,334,200) per individual.

MAPPING AND SNP CALLING

We aligned reads to the female A. tuberculatus reference genome
(Kreiner et al. 2019), using BWA-mem version 0.7.17-r1188
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(Li 2013). After mapping, individuals had an average diploid
coverage of 28×. Duplicate reads were removed with pi-
card MarkDuplicates (Broad-Institute 2016). We used Freebayes
version 1.1.0-46 (Garrison 2012) to call SNPs using default set-
tings except for –max-complex-gap 1, –haplotype-length 1, and
–report-monomorphic. We then filtered SNPs such that sites were
removed based on excess missing data (>20%), allelic bias (AB
<0.25 and >0.75), overall variant call quality (QUAL <30, re-
moving sites with greater than a 1/1000 SNP calling error rate),
after dustmasking for low complexity and removing multiallelic
SNPs and indels. Because high coverage data tend to overes-
timate mapping quality such that it no longer scales linearly
with depth, we followed recommendations in Fang (2014), fur-
ther removing particularly high depth sites (>mean depth +
3(sqrt(mean depth))) with relatively low QUAL (<2∗depth). Five
genotypes were removed from downstream analyses due to >5%
sequencing error rate based on a KMER-based analysis (Ranallo-
Benavidez et al. 2020), resulting in a total of 20,555,154 high-
quality SNPs across 182 individuals.

POPULATION STRUCTURE

We merged filtered, high-quality SNPs (using the program
bcftools merge) from the 182 high-quality resequenced genomes
described above, with the high-quality SNP set from Kreiner
et al. (2019). Important for merging these datasets, the same
SNP filtering process was applied to both datasets, except for
the high-coverage step, as the Kreiner et al. (2019) collections
were of more moderate coverage (∼10×). Briefly, these previous
collections were made from eight agricultural fields in Illinois
and Kansas with reports of uncontrolled A. tuberculatus popua-
tions, and fields within Walpole Island and Essex County, On-
tario, Canada, where reports of agriculturally associated popula-
tions of A. tuberculatus have only recently occurred in the last
decade. Additionally, this dataset included 10 individuals col-
lected from nearby Ontario natural populations, occurring along-
side the Thames River outside of London, and the Grand River
outside of Hamilton. From this merged set of 2,591,759 SNPs,
we investigated population structure with a principal component
analysis (PCA) in plink (option –pca) (Purcell et al. 2007). We
investigated predictors of genome-wide relatedness in a multiple
regression framework using principal component (PC) 1 and PC2
as dependent variables and longitude, latitude, sex, environment,
and population pair as independent variables. To test if predic-
tors were different among PCs, we used a grouped regression ap-
proach that included values of both PCs at once, testing whether
the explanatory power of these various predictors differed among
PCs (as indicated by an interaction with principal component
number, i.e., PC1 or PC2) (model syntax: PC value ∼ PC # ×
Environment + PC # × Longitude + PC # × Sex + PC # ×

Pair). Lastly, we used the program Faststructure (Raj et al. 2014)
to estimate the proportion of individual and population admixture
levels, at K = 2 (testing a priori hypotheses about the distribution
of A. tuberculatus varieties) and for comparison, at K = 3.

MIXED MODELS AND TESTS FOR PREADAPTATION

Modeling individual-level phenotypic variation
We used R to fit linear mixed models (implemented with the
package lme4) of geographic, environmental, and sex-based pre-
dictors to each of the eight quantitative phenotypes measured in
the common garden experiment, all of which were evaluated with
a type III sums of squares. For the two categorical phenotypes
(flower color, stem color), we used the R package glmmadmb
to implement a multinomial mixed model (link = “logit”). For
analysis of phenotypic variation at the individual level from the
common garden experiment, we accounted for the relevant block
effect (typically roof block, except for time to germination, for
which we used greenhouse: greenhouse block), and nested hier-
archical structure of maternal lines (family) within populations as
random effects. Because we were testing independent hypotheses
about factors that drive variation across our different phenotypes
(and thus testing each hypothesis once), no multiple test correc-
tion was performed. For all 11 traits, individual-level phenotypic
variation was measured with the following model structure (note
that we initially included an environment by treatment interaction
but removed it due to low explanatory power and lack of signifi-
cance for all phenotypes, except for germination):

Focal trait ∼ Environment + Treatment + Sex

+ Lat + Long + Germination JD + Measurement JD

+ Population mean ancestry + (1|Block) + (1|Pop/Family)).

(1)

Our fixed effect predictors had the following character-
istics: environment had two levels (natural or agricultural),
treatment had three levels (control, soy, or water), sex had two
levels (M/F), and latitude and longitude were both treated as
continuous variables, referring to the geographic coordinate of
the originating population. Except for when we were modeling
germination itself, Julian day of germination and Julian day of
measurement were included as covariates to account for variation
in how long a plant had been growing prior to measurement.
We used the population-mean varietal ancestry (the average of
the Faststructure inferred proportion of an individual’s genome
assigned to cluster 1 at K = 2 across all sequenced individuals
within a population) as an estimate of genetic structure in these
models. We used population-level estimates rather than family
level because of low sequencing replication (one individual per
full sibling family in an obligately outbreeding species), and
because population-level estimates should reflect broad-scale
geographic patterns in ancestry, similar to using latitude and
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longitude as proxies for geographic and climatic variation.
Using Akaike information criterion (AIC), we compared the
full model as shown above to a reduced model that excluded
population mean ancestry to evaluate its importance in explaining
phenotypic differentiation.

Testing the role of var. rudis ancestry
We were interested in explicitly testing the role of var. rudis
ancestry on adaptive phenotypic variation, given a priori al-
ternative hypotheses of hybridization versus var. rudis ances-
try facilitating agricultural adaptation (Sauer 1957; Waselkov
2014). To incorporate both ancestry and phenotypic traits, we
analyzed the sex-specific phenotypic means within each treat-
ment, within each maternal line. Thus, while phenotypic fam-
ily means were distinct across each sex and treatment level with
a maternal line, we assigned all treatment and sex replicates of
a maternal line the Faststructure ancestry estimate we attained
from their single sequenced full sibling. We then examined two
key fitness-related traits, biomass and flowering time, separately
for males and females given strong sexual dimorphism in the
species.

Beyond the direct linear effect that var. rudis ancestry might
have on phenotypic variation, we were particularly interested in
testing whether there was a positive quadratic effect on fitness-
related variation (indicating a role for heterosis), and whether
there was an interaction between the proportion of var. rudis an-
cestry and experimental treatment on fitness-related variation (in-
dicating a role for preadaptation, in that ancestry confers reared
environment-specific benefits). Lastly, we wanted to test the ex-
tent to which phenotypes differed among natural and agricul-
tural environments, regardless of ancestry (indicating de novo
agricultural adaptation). To test these three alternative but not
mutually exclusive hypotheses, we used a model similar to one
testing linear selection gradients separately for males and fe-
males, regressing these ancestry and environment terms along-
side standardized phenotypic predictors on two fitness-related
traits (flowering time and biomass) to account for correlated trait
evolution:

Fitness − related trait ∼ stand (Germination time)

+ stand
(
Hypocotyl length

)
+ stand

(
Cotyledon width

)

+ stand (Leaf number) + stand (Stem width @ FT)

+ stand
(
Plant height @ FT

)
+ stand (Node number @ FT)

+ stand
(
Flowering time or biomass

)
+ stand (Stem color)

+ stand (Flower color) + Long + Lat + Treatment + Env

+ Ancestry + Ancestry2 + Ancestry : Treatment. (2)

Results
DRIVERS OF THE DISTRIBUTION OF ANCESTRAL

VARIATION

To understand patterns of genetic relatedness that underlie
phenotypic variation within and between populations, and the
potential role of ancestry in facilitating agricultural adaptation,
we first characterized patterns of population structure and an-
cestry across our accessions in the context of previously studied
populations (Fig. 1).

We find that individuals from our paired-environment col-
lections show a longitudinal cline in ancestry, as expected (Sauer
1957; Waselkov and Olsen 2014; Kreiner et al. 2019) (Fig. 2A,
C). Previous work showed that Ontario natural populations in the
eastern part of the range are homogenous for var. tuberculatus
ancestry and that, along with our most westerly collections in
Missouri, nearby Essex county agricultural populations are ho-
mogenous for var. rudis ancestry, likely reflecting a long-distance
introduction event from the Midwest (Kreiner et al. 2019). The
nearly 200 genotypes we have added to this genome-wide
inference of population structure support the circumscription
of the historical ranges of these two ancestral varieties, in that
northeastern populations (e.g., Maume, Mccombe, Weston)
showed a higher proportion of Amaranthus var. tuberculatus
ancestry and southwestern populations showed predominantly
var. rudis ancestry (Fig. 2C). A joint PCA of genome-wide
genotypes from common garden accessions and samples pre-
viously characterized in (Kreiner et al. 2019) illustrates that
our newly collected accessions showed somewhat less extreme
population structure along both the first and second PCs. This
is consistent with the more continuous but geographically inter-
mediate sampling we performed for genotypes phenotyped and
sequenced in the common garden (Figs. 1 and 2A). Individuals
from our common garden typically fell in a very similar position
for PC2 and showed much more variation along PC1, which
explained 20% of the total variation in genotype composition
across the 349 joint accessions. PC1 has been previously shown
to strongly reflect A. tuberculatus varietal ancestry (Kreiner et al.
2019).

When we performed a PCA exclusively on genotypes from
our common garden experiment, PC1 similarly explained 18%
of the variation in genotype composition, whereas PC2 explained
substantially more than the joint PCA, 15% (Fig. 2B). From a
multivariate regression of this PCA of just common garden acces-
sions, we find that PC1 significantly relates to longitude (F1,180 =
27.05, P < 0.001), population pair (F1,180 = 4.58, P = 0.03), and
environment (agricultural vs. nonagricultural, F1,180 = 5.51, P =
0.02), but neither latitude nor sex. To test if the predictive effects
of environment differ across PCs in a joint model, we performed a
follow-up grouped regression, jointly examining if the predictive
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Figure 2. Patterns of population structure from paired natural-agricultural collections, grown in the common garden experiment, in the
context of samples from Kreiner et al. (2019). (A) Principal component analysis of samples from Kreiner et al. (2019), where populations
have been identi!ed as homogenous for both A. tuberculatus var. tuberculatus ancestry (e.g., Ontario Nat) and A. tuberculatus var. rudis
ancestry (e.g., Missouri) alongwith 187 genotypes grown in the common garden experiment originating from pairwise Nat-Ag population
sampling. (B) Principal component analysis of just common garden genotypes. (C) Population structure (at K = 2, re"ecting ancestry of
var. rudis in black and var. tuberculatus in light gray) across both previously analyzed samples and common garden accessions. Allowing
for another ancestral population (K = 3) re"ects largely the same major axes of variation in K = 2. Plot is sorted by longitude (from west
to east), population pairs within the common garden experiment are indicated by arched lines, and labels of populations from Kreiner
et al. (2019) are colored according to the legend in panel A. (D) Higher proportion of average var. rudis ancestry in agricultural versus
natural environments within population pairs, sorted by longitude (left), and the average effect across environments as illustrated by
the least-squares means from a multiple regression that also included longitude, latitude, and pair (right). Error bars represent standard
error.

effects of environment (agricultural vs. natural), pair, and longi-
tude differ among PCs (i.e., testing for a significant PC number ×
predictor interaction). This grouped model fails to detect a signif-
icant environment by PC interaction, implying that the predictive
effects of environment are consistent across multiple dimensions
of genotype differentiation, but picks up a significant pair × PC
(F1,366 = 10.3686, P = 0.001396) and longitude × PC interaction
(F1,366 = 84.95 P = <2.2 × 10–16) with both pair and longitude
better predicting the first PC.

The influence of environment (whether genotypes were col-
lected in natural or agricultural environments) on ancestry iden-
tified in the common garden-specific PCA is apparent in Fig-
ure 2C, where agricultural populations show an excess of var.
rudis ancestry given their longitude, and more apparently so in
Figure 2D, within their population pair—a more direct compari-
son of environmentally driven sorting of ancestry. Indeed, a mul-
tivariate regression of the Faststructure-inferred proportion of var.
rudis ancestry (the proportion of grouping 1 at K = 2) finds
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Figure 3. Population-level reaction norms of biomass and !owering time across the water, control, and soy treatments in the common
garden experiment. Thin and thick lines represent population and environment mean reaction norms, respectively, and are additionally
colored by whether collections were found in natural or agricultural environments.

longitude (F1,167 = 8.29, P = 0.005), pair (F1,167 = 3.25, P =
6.70 × 10–5), and environment (F1,167 = 6.66, P = 0.011) to be
significant predictors of ancestry, with more var. rudis ancestry
in agricultural environments. On average, this pattern resulted in
a 7.8% excess of var. rudis ancestry in agricultural environments
across all population pairs, after controlling for other covariates.
Of our 17 population pairs, the nine pairs that show greater var.
rudis ancestry in agricultural environments have a median 25%
excess of var. rudis ancestry compared to natural environments
(and up to 43% greater in the most extreme pairing; Fig. 2D).
In contrast, the remaining eight pairs that have greater var. rudis
ancestry in natural environments differ by only 8% on average
(and at 14% at its maximum). The significant enrichment of var.
rudis ancestry in agricultural environments given a population
pair’s longitude supports the hypothesis that the expansion of the
var. rudis contributed to the A. tuberculatus agricultural invasion
(Waselkov and Olsen 2014; Waselkov et al. 2020). Furthermore,
that population pair significantly predicts ancestry across a dis-
parate sampling suggests that selection is maintaining this pat-
tern of environment-dependent ancestry despite nearby natural
and agricultural populations being highly connected through gene
flow.

GENERAL OBSERVATIONS AND PLASTICITY IN A

MANIPULATIVE COMMON GARDEN

Across the 4493 individuals fully phenotyped in the common gar-
den experiment, we found almost a perfect 1:1 sex ratio (2252
males vs. 2241 females). On average, we completely phenotyped
22.5 families per population with 11.2 females per family (SD =

3.17) and 11.3 males per family (SD = 3.33), with an average of
7.5 family replicates phenotyped across each of three treatments.

Our treatments worked as expected, with population-mean
flowering time and dry biomass reflecting that plants generally
grew larger and flowered fastest in the water treatment, and were
smallest and later flowering in the soy competition treatment
(Fig. 3). However, rather than recapitulating the often-flooded en-
vironment of natural populations, from eye observations and the
necessity of near daily watering, the water treatment only tended
to reduce drought stress relative to the control treatment. As an
example of the magnitude of the effect of our three treatments, we
characterized how flowering time differed depending on whether
a genotype was reared in the water, control, or soy treatment. A
least-squared mean estimate from the general regression model,
using flowering time as a response variable, estimates that the
water treatment led to 1 day earlier flowering than the control
and 4 days earlier than the soy treatment. We further modeled
phenotypic plasticity as a random effect, testing for a family by
treatment interaction (lmer notation = 1 | treatment:family). Fol-
lowing the general model additionally including this plasticity
random effect term, we find that modeling phenotypic plasticity
results in a significantly better fit to our data despite the addi-
tional degrees of freedom (χ2

df = 1 = 369.27, P < 0.001) and can
explain an additional 5.28% of the variation in flowering time
(on top of the 51% of the base model; conditional r2)—implying
10% (0.053/0.51) of the explainable variation in flowering time is
plastic. Phenotypic plasticity was of even greater importance for
determining dry biomass, explaining an additional 11% of vari-
ation in dry biomass on top of the 64% that can be explained in
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our base model (χ2
df = 1 = 320.3824, P = <2 × 10–16), imply-

ing that ∼17% (0.11/0.64) of the explainable variation in above
ground biomass is plastic. To test whether populations from nat-
ural and agricultural environments differed in the extent of phe-
notypic plasticity, we compared our plasticity model to one that
allowed plasticity to differ across environments (lmer notation =
Environment | Treatment:Family). For both biomass and flower-
ing time, allowing plasticity to vary among environments did not
increase the variance explained in the model, with environmental
differences in plasticity not significantly explaining dry biomass
(χ2

df = 2 = 0.329, P = 0.849) and very marginal effects on flow-
ering time (χ2

df = 2 = 4.613, P = 0.0996) (Fig. 3).

DRIVERS OF PHENOTYPIC VARIATION AND THE

ROLE OF ANCESTRY

Geographic, environmental, and ancestral trait
divergence
We found evidence for phenotypic differentiation across our
broad sampling of A. tuberculatus individuals grown in the same
common garden, by latitude, longitude, sex, and between agri-
cultural and natural environments. We evaluated phenotypic vari-
ation across all individuals in the common garden experiment
in the typical manner of controlling for nested family structure,
but also considering the effect of accounting for ancestry. For all
models, adding population-mean ancestry as a covariate led to a
substantially smaller AIC (Table 1).

Despite sampling a far greater range of longitude than lati-
tude, after accounting for ancestry, latitude more consistently pre-
dicted variation in our measured traits (6/11 traits significantly
predicted by latitude vs. 3/11 for longitude: Table 1). For lon-
gitude, accounting for ancestry tended to decrease its explana-
tory power, considerably decreasing the longitude χ2 and signif-
icance for days to flowering, near completely so for stem color
(Table 1; Fig. 4). Although latitude also covaried with ancestry,
accounting for ancestry tended to increase the explanatory power
of latitude (e.g., for stem width at flowering and dry biomass)
(Table 1; Fig. 4). The observation that ancestry absorbs more
explanatory power of longitude compared to latitude is consis-
tent with stronger longitudinal than latitudinal isolation between
A. tuberculatus lineages, in line with the patterns of population
structure we describe above.

Amaranthus tuberculatus ancestry significantly predicted
days to germination (χ2 = 4.121, P = 0.043), hypocotyl length
(χ2 = 9.687, P = 0.0019), stem width at flowering (χ2 = 13.824,
P = 0.0002), stem color (χ2 = 29.572, P = 5.39 × 10–8), flower
color (χ2 = 6.008, P = 0.0142), and marginally dry biomass
(χ2 = 3.490, P = 0.0618) in our individual-level regressions (Ta-
ble 1)—highlighting the role of the historical isolation between
these two lineages in shaping current day patterns of phenotypic
variation from early to late-life history. We found little signal of

the classic reciprocal common garden test for agricultural adap-
tation across our measured traits (“a home advantage”); however,
days to germination showed a significant treatment by environ-
ment interaction (χ2 = 9.376, P = 0.009), with agricultural and
natural types having similar time to germination in the control
and soy treatment, but notably earlier germination of riparian nat-
ural types in the water treatment (Fig. 4). With genetic ancestry
showing significant differences between the two habitats of ori-
gin, we examined the extent that accounting for ancestry resolved
natural-agricultural phenotypic differentiation. In comparison to
the full model results, where environment was a marginally sig-
nificant predictor only for days to flowering (χ2 = 3.038, P =
0.0814), before accounting for ancestry, agricultural types tended
to have marginally wider cotyledons (χ2 = 2.866, P = 0.0905),
fewer leaves early on (χ2 = 2.857, P = 0.090), and showed sig-
nificantly longer time to flowering (χ2 = 4.376, P = 0.0365)
(Table 1; Fig. 4). The signficant environment by treatment inter-
action for time to germination was consistent across models (Full
model: χ2 = 9.3759, P = 0.0092; Ancestry-reduced model: χ2 =
9.498, P = 0.0087).

Ancestry effects on !tness-related traits: Tests for
preadaptation, de novo adaptation, and hybrid vigor
We hypothesized that if var. rudis ancestry is preadapted to agri-
cultural habitats, the effect of the proportion of var. rudis ances-
try on key life history characteristics such as biomass and flow-
ering time would vary depending on experimental treatment. In
contrast, if hybridization between varietal lineages has facilitated
much of the A. tuberculatus’s contemporary invasion through hy-
brid vigor, we predicted that var. rudis ancestry would have a
nonlinear relationship with fitness-related traits. Finally, if pop-
ulations were adapting to agricultural regimes de novo, we pre-
dicted that fitness-related traits should vary among natural and
agricultural environments, regardless of ancestry.

An analysis at the family-mean level of lifetime above-
ground biomass in males found no quadratic effect of var. rudis
ancestry; however, we found a significant linear effect of the
proportion of var. rudis ancestry, where pure var. rudis types
were predicted to accumulate biomass at a rate of 0.046 g/day
more than pure var. tuberculatus types (F1,498 = 3.9112, P =
0.0485153). Additionally, the interaction effect of var. rudis an-
cestry by treatment and marginally, source environment (natural
or agricultural), significantly affected male biomass (Ancestry ×
Treatment: F2,498 = 3.335, P = 0.0364; Environment: F2,497 =
3.234, P = 0.0728). Biomass-based fitness estimates tended to
be lower in males from natural environments, compared to agri-
cultural environments, regardless of treatment (Fig. 5). The sig-
nificant interaction between var. rudis ancestry and treatment re-
vealed that the proportion of var. rudis ancestry had little effect
on biomass in the water and soy treatment, but that it substantially
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Figure 4. Phenotypic differentiation by longitude, latitude, environment, and the confounding effect of ancestry. All points indicate
family-wise means, except for days to germination. (Top) Days to !owering, node number at !owering, and stem color by longitude and
proportion of var. rudis ancestry. (Middle) Days to !owering, rate of stem width, and rate of hypocotyl length by latitude and proportion
of var. rudis ancestry. (Bottom) Days to !owering and rate of early leaf number by environment (Left). Least-squares means of days to
germination by source environment and treatment, illustrating their interaction (Right).

Figure 5. The treatment-dependent effects of var. rudis ancestry on male biomass (left panel) and male days to !owering (right). To
the illustrate the signi"cant linear, but not quadratic effects of ancestry, the illustrated values are based on the least-squares means
of a reduced multiple regression model that excluded the quadratic term, and that controlled for the indirect effects of all other mea-
sured phenotypes on "tness. The on average higher biomass of genotypes from agricultural environments (orange) relative to natural
environments (blue), regardless of ancestry, is apparent by comparing the two sides of the biomass panel.
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increased biomass in the absence of competition and water sup-
plementation (Fig. 5). For male flowering time, of our interest
in linear, nonlinear, and interaction effects of ancestry, only the
interaction between var. rudis ancestry and treatment remained
a significant predictor (Ancestry × Treatment: F2,498 = 3.2144,
P = 0.041015), with the effect of ancestry on flowering time in
soy significantly different from that in the control treatment (t =
2.514, P = 0.0123). Although higher levels of var. rudis ancestry
led to a shorter time to flowering in the control treatment, increas-
ing var. rudis ancestry extended time to flowering in the soy treat-
ment (Fig. 5). These male, treatment-specific effects of ancestry
more broadly reflect a loss of phenotypic plasticity (convergence
of time to flowering or rate of biomass, regardless of reared envi-
ronment) with increasing proportion of var. rudis ancestry. Fe-
male flowering time and biomass were not influenced by var.
rudis ancestry (neither linear or quadratic terms, or through its
interaction with treatment), but females showed marginally lower
biomass and marginally earlier time to flowering in natural com-
pared to agricultural environments (Biomass: F1,498 = 3.091, P
= 0.0793; Flowering: F1,498 = 3.374, P = 0.0668).

Discussion
We found evidence of phenotypic differentiation in A. tuber-
culatus across geographic gradients, across ancestral lineages,
and resulting from the transition from natural riparian to highly
disturbed agricultural environments. Geographic gradients in
climate has led to strong latitudinal clines in growth and life
history characteristics; however, longitudinal phenotypic clines
are in large part explainable by ancestry. Although we found
that agricultural populations tended to exhibit longer times to
germination in their simulated “away” environment, slower early
growth rates, and longer time to flowering, these differences
were also in part related to differential ancestry across natural
and agricultural environments. We found that the transition
of A. tuberculatus into agricultural environments has favored
southwestern var. rudis ancestry—ancestry that leads to lower
phenotypic plasticity in fitness-related traits and generally higher
biomass, but also treatment-dependent phenotypes. Higher var.
rudis ancestry results in longer time to flowering in the face of
competition, and both faster time to flowering and increased
biomass in conditions lacking competition or water supple-
mentation (i.e., the control treatment). When accounting for
these complex treatment-dependent effects of ancestry, we also
found marginally lower biomass and earlier flowering time in
natural compared to agricultural environments, suggesting inva-
sive agricultural populations may be adapting to a new fitness
peak. Therefore, phenotypic differentiation among natural and
agricultural environments is likely to be driven by altered fitness

landscapes that has led to both the selective sorting of var. rudis
ancestry (preadaptation) and de novo adaptation. These results
highlight how human-mediated disturbance and agricultural
regimes drive the evolution of native species, shaping interac-
tions between once isolated lineages and drawing from adaptive
variation on multiple timescales.

PHENOTYPIC UNDERPINNINGS OF AGRICULTURAL

ADAPTATION IN THE FACE OF GENE FLOW

We were interested in the extent to which phenotypic varia-
tion consistently differed among natural and agricultural environ-
ments in a common garden of highly replicated genotypes from
environmentally paired populations across a wide sampling of
the A. tuberculatus native range. An initial investigation of pre-
dictors of individual-level phenotypic variation observed in our
common garden experiment, accounting for hierarchical struc-
ture of families within populations but before controlling for an-
cestry, showed that individuals from agricultural populations tend
to flower later (1.5 days), have fewer leaves early on in their life
history, and suggested local adaptation via germination (through
an environment × treatment effect “home advantage”) (Fig. 4).
Although time to germination was relatively similar for agricul-
tural and natural types in both the control and soy treatment, nat-
ural types germinated significantly earlier than agricultural types
in the water treatment, suggesting that agricultural adaptation via
germination may be driven by moisture availability rather than
competition. Interestingly, in large part these phenotypic differ-
ences were not consistent with the hypothesis that disturbance
regimes will select for accelerated life history (i.e., days to flow-
ering) in agricultural populations (De Wet and Harlan 1975).
Overall, although the magnitude of these phenotypic differences
between environments appears small, that we observed consis-
tent differences across environments with our paired collections
suggests that selection may be acting on these traits despite lit-
tle observed evolutionary response. The efficacy of the evolu-
tionary response to agriculture may be dampened by very recent
timescales of selection, or gene flow hindering an environment-
specific response to selection. That we find population pair to be
a significant predictor population structure (from both PCAs and
Faststructure; Fig. 2) after controlling for latitude and longitude
suggests that gene flow in particular may be constraining the re-
sponse to selection.

A ROLE FOR BOTH PREADAPTATION VIA

PREFERENTIAL SORTING OF ANCESTRY AND DE

NOVO AGRICULTURAL ADAPTATION

Gene flow across environments and across the range may not
only lead to reduced differentiation in phenotypes but may also
drive heterogeneity in shared ancestry. In the case of A. tuber-
culatus varieties, secondary contact between these two ancestral
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lineages has led to longitudinal clines in ancestry across their
range. We find that in large part, the longitudinal clines in pheno-
types we initially observed (e.g., days to flowering, stem color)
covary with longitudinal clines in ancestry (Figs. 2 and 4), imply-
ing that differences that have accumulated in allopatry among A.
tuberculatus lineages have resulted in phenotypic differentiation
in not just seed dehiscence, seedling and flower morphology as
has been described (Sauer 1955, Costea et al. 2005), but also in
key life history characteristics that appear to be driven by broad-
scale adaptation to climate. Stem color shows the most extreme
pattern of phenotypic differentiation by ancestry that we observe,
with northeastern var. tuberculatus ancestry displaying signifi-
cantly darker purple coloring compared to lighter and greener
var. rudis stems. This coloration difference among A. tubercula-
tus lineages is consistent with adaptive physiological hypotheses
for colder temperatures and northern climates resulting in genet-
ically darker, less reflective coloring (Chalker-Scott 1999; Dick
et al. 2011; Koski and Galloway 2020). Compared to longitude,
fewer latitudinal clines in growth-related phenotypes were con-
founded with genetic ancestry, possibly due to the smaller latitu-
dinal variation sampled; however, accounting for ancestry tended
to increase latitudinal explanatory power. We found the strongest
evidence of latitudinal clines in mid-life history traits—height
at flowering, stem width at flowering, and days to flowering
(Table 1; Fig. 4)—a signal of broad-scale geographic adaptation
to climate with populations evolved in colder climates growing
faster and flowering earlier to avoid severe winters (Stinchcombe
et al. 2004).

Beyond a longitudinal cline in ancestry, we find that var.
rudis ancestry is preferentially retained (or var. tuberculatus an-
cestry selected against) in agricultural environments, finding on
average 8% higher var. rudis ancestry in agricultural environ-
ments and up to 44% more within the most extreme natural-
agricultural population pairing (Fig. 2). That the agricultural in-
vasion of A. tuberculatus has been more severe in southwestern
parts of the range may lead one to predict that var. rudis ancestry
would be associated with agriculture regardless of a role of selec-
tion. Furthermore, although past work has shown increased levels
of admixture in agricultural compared to natural environments,
the extent to which broader-scale processes influenced these pat-
terns remained unclear (Waselkov and Olsen 2014). We explic-
itly accounted for the two different timescales potentially driv-
ing patterns of ancestry—environmental drivers of ancestry on
contemporary timescales, and geographic drivers of ancestry on
deeper timescales—through sampling pairs of natural and agri-
cultural populations <25 km apart in a replicated fashion across
the range. Combining this sampling design with common gar-
den phenotyping and whole-genome sequencing thus provided a
powerful test of a key hypothesis put forward in Evolution over
60 years ago (Sauer 1957)—the extent to which genetic varia-

tion underlying weediness may have predated the association of
A. tuberculatus with agriculture.

We explicitly tested for agricultural preadaptation (selective
sorting of var. rudis ancestry) by examining whether the effect
of the proportion of var. rudis ancestry on phenotypes varied
across treatments, which we designed to mimic key components
of natural and agricultural environments. We found that the ef-
fect of var. rudis ancestry on fitness-related traits depended on the
reared environment (treatment), implying locally adapted ances-
tral variation. However, treatment-specific ancestry effects were
not necessarily dominated by var. rudis types outperforming var.
tuberculatus types in the soy competition treatment (i.e., a ma-
jor axis of agricultural habitats) and underperforming in the wa-
ter treatment (i.e., a major axis of natural habitats), as we pre-
dicted. For male biomass, the ancestry by treatment interaction
effect was driven by the strong positive effect of var. rudis ances-
try on biomass in the control treatment, and relative lack thereof
in either the soy or water treatments (Fig. 5). Similarly, var. rudis
ancestry in males led to earlier time to flowering in the control
treatment, little difference in the water treatment, and later time
to flowering in the soy treatment (Fig. 5). One hypothesis for
the potential benefit of later flowering in the presence of focal
crops like soy or corn is that it may facilitate a longer vegetative
growth period allowing Amaranthus to dominate the canopy and
facilitate efficient pollen dispersal. However, with drought having
been shown to select for early flowering genotypes who shorten
their life history in response to a shortened growing season
(Cohen 1976; Kozłowski 1992; Franks et al. 2007), our re-
sults suggest that the early flowering of var. rudis in control
treatments—which experienced increased water stress compared
to the water treatment—is likely adaptive. Indeed, it is impor-
tant to note that as opposed to water saturation of the soil, on the
hot sunny roof where our experiment was conducted, the water
treatment only reduced the severity of soil dry out relative to the
control. Thus, the pronounced importance of var. rudis ancestry
in the control treatment for both flowering- and biomass-based
fitness components suggests that var. rudis ancestry may experi-
ence a selective advantage over var. tuberculatus ancestry in drier
conditions, as is typical of ruderal habitats, and in agricultural
conditions with increasingly frequent droughts. Although these
hypotheses need further testing to validate to how these
treatment-dependent effects translate in field conditions, the over-
representation of var. rudis ancestry in agricultural environments,
higher biomass of pure (but not intermediate) var. rudis types,
and significant treatment-dependent phenotypic effects of ances-
try provides strong evidence for the role of ancestral preadapta-
tion in the A. tuberculatus agricultural invasion.

In addition to preadaptation, our investigations suggest that
ongoing local adaptation, but not phenotypic plasticity, is fur-
ther facilitating any selective advantage that var. rudis lineages
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may have in agronomic environments. We found that regardless
of the proportion of var. rudis ancestry, natural and agricultural
samples showed adaptive differences in germination depending
on moisture availability, and that biomass was marginally larger
and female flowering time marginally later in individuals from
agricultural environments. The evolution of higher fitness in in-
troduced as opposed to native ranges has often been reported
(Leger and Rice 2003; Erfmeier and Bruelheide 2005; Caño et al.
2008)—consistent with de novo adaptation to novel agricultural
environments facilitating A. tuberculatus reaching a new fitness
peak. We find no substantial evidence of increased plasticity in
genotypes collected from agricultural habitats compared to those
from natural habitats, in contrast to weed generalist “jack of all-
trades” hypotheses (Richards et al. 2006) that increased plastic-
ity may facilitate the invasion of disturbed agricultural environ-
ments. On the contrary, we find that var. rudis ancestry, which
has been preferentially retained in agricultural environments,
shows much less plasticity in both biomass and flowering time,
facilitating higher fitness in more diverse environments. This
joint inference of the role of ancestry, home environment, reared
environment, and geography in shaping patterns of phenotypic
variation has thus provided evidence for the invasion of A. tuber-
culatus into agricultural habitats through adaptation across mul-
tiple timescales.

CONCLUSIONS
In conclusion, this work has illustrated the power of joint genomic and
phenotypic investigation, and the importance of ancestry inference in
testing hypotheses about the timescale of adaptation. We find strong evi-
dence for a role of preadaptation in the A. tuberculatus invasion of agri-
cultural environments, through the preferential sorting of var. rudis an-
cestry, further supplemented by adaptation on more recent timescales.
We show that adaptation to agricultural environments has occurred in the
face of gene flow as evidenced by natural-agricultural population prox-
imity predicting similarity of population structure. Future work on the
extent of environment-mediated selection for or against gene flow across
the genome, the genomic architecture of phenotypic trait differences, and
the timescale of allele frequency change associated with agricultural en-
vironments will further resolve the enigma of rapid adaptation to human-
mediated environmental change.
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